化工学报 ›› 2018, Vol. 69 ›› Issue (9): 3783-3791.doi: 10.11949/j.issn.0438-1157.20180359

• 流体力学与传递现象 • 上一篇    下一篇

微纳孔隙中复杂流体液滴驱替的跨尺度混合模拟

刘凡犁, 刘广志, 王沫然   

  1. 清华大学航天航空学院, 北京 100084
  • 收稿日期:2018-04-03 修回日期:2018-06-04
  • 通讯作者: 王沫然 E-mail:mrwang@tsinghua.edu.cn
  • 基金资助:

    国家自然科学基金项目(91634107)。

Multiscale hybrid simulation of complex fluid droplet displacement in mirco/nano channels

LIU Fanli, LIU Guangzhi, WANG Moran   

  1. Institutes of Engineering Thermal Physic, Tsinghua University, Beijing 100084, China
  • Received:2018-04-03 Revised:2018-06-04
  • Supported by:

    supported by the National Natural Science Foundation of China (91634107).

摘要:

理解微纳孔隙通道内驱替液对附着在壁面上的液滴进行驱替这一过程的机理,有助于深入了解非常规条件下油气开发过程中的输运规律。该过程的跨尺度特性以及液滴与驱替液之间的强烈相互作用,决定了必须使用混合模拟方法进行研究。然而在已有的研究中,通常采用的阻逸力界面条件干扰了连续区域到分子尺度区域的切应力传递,导致流动阻力计算不正确。采用布置虚拟壁面的新方法代替阻逸力界面条件,以解决切应力传递不正确的问题。在此基础上,比较了液滴分别为单原子分子和复杂流体的情形,以及壁面完全刚性和允许壁面粒子振动的情形。结果表明传统的阻逸力方法可导致流动阻力的误差高达65%,而采用虚拟壁面的界面条件可将误差降至1%以内,具有显著优势。此外,研究结果还显示液滴为复杂流体和允许壁面粒子振动均对流动阻力有较大的影响。

关键词: 多尺度, 微尺度, 分子模拟, 非常规油气

Abstract:

Understanding the mechanism of fluid droplets attached to micro/nano channels being displaced by another fluid can shed light on the transport law in unconventional oil and gas development. The cross-scale nature of the process and the strong interaction between droplet and displacement fluid determine that a hybrid simulation method must be used. In previous researches, the commonly used interface conditions of adding an external force interfere with the transfer of shear stress from the continuous domain to the molecular domain, resulting in incorrect calculation of the flow resistance. A new method of arranging a virtual wall instead of adding a force was used to solve the problem of incorrect shear stress transfer. Based on this new method, the cases are compared where the droplets are monoatomic molecules and butane, and the cases that the wall is completely rigid and the wall particles are allowed to vibrate, respectively. The results show that the traditional method of adding a force could lead to errors up to 65% in the flow drag, while arranging a virtual wall could keep error within 1%, thus has significant advantage. The introduction of droplet molecular structure and the wall particle vibration both have a great influence on the flow resistance.

Key words: multiscale, microscale, molecular simulation, unconventional oil and gas

中图分类号: 

  • TE319

[1] CHEN S, WANG M, XIA Z. Multiscale fluid mechanics and modeling[J]. Procedia Iutam, 2014, 10(10):100-114.
[2] GRECOV D, DE ANDRADE LIMA L R P, REY A D. Multiscale simulation of flow-induced texture formation in polymer liquid crystals and carbonaceous mesophases[J]. Molecular Simulation, 2005, 31(2/3):185-199.
[3] O'CONNELL S T, THOMPSON P A. Molecular dynamics continuum hybrid computations:a tool for studying complex fluid flows[J]. Physical Review E Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 1995, 52(6):R5792.
[4] HADJICONSTANTINOU N G, PATERA A T. Heterogeneous atomistic-continuum representations for dense fluid systems[J]. International Journal of Modern Physics C, 1997, 8(4):9700083.
[5] WAGNER G, FLEKKØY E G. Hybrid computations with flux exchange[J]. Philos. Trans. A Math. Phys. Eng. Sci., 2004, 362(1821):1655-1665.
[6] NIE X B, CHEN S Y, E W N, et al. A continuum and molecular dynamics hybrid method for micro-and nano-fluid flow[J]. Journal of Fluid Mechanics, 2004, 500(500):55-64.
[7] DELGADO-BUSCALIONI R. Tools for multiscale simulation of liquids using open molecular dynamics[J]. Lecture Notes in Computational Science & Engineering, 2012, 82:145-166.
[8] ZHOU W J, LUAN H B, HE Y L, et al. Erratum to:a study on boundary force model used in multiscale simulations with non-periodic boundary condition[J]. Microfluidics & Nanofluidics, 2016, 20(6):93.
[9] YASUDA S, YAMAMOTO R. Multiscale modeling and simulation for polymer melt flows between parallel plates[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2010, 81(2):036308.
[10] SUN J, HE Y L, TAO W Q. Molecular dynamics-continuum hybrid simulation for condensation of gas flow in a microchannel[J]. Microfluidics & Nanofluidics, 2009, 7(3):407.
[11] LIU J, CHEN S, NIE X, et al. A continuum-atomistic simulation of heat transfer in micro-and nano-flows[J]. Journal of Computational Physics, 2007, 227(1):279-291.
[12] LIU J, CHEN S, NIE X, et al. A continuum-atomistic multi-timescale algorithm for micro/nano flows[J]. Communications in Computational Physics, 2008, 4(5):1279-1291.
[13] FLEKKØY E G, WAGNER G, FEDER J. Hybrid model for combined particle and continuum dynamics[J]. EPL, 2007, 52(3):271.
[14] LIU G, ZHANG J, WANG M. Drop movements and replacement on surface driven by shear force via hybrid atomistic-continuum simulations[J]. Molecular Simulation, 2016, 42(10):1-8.
[15] 刘广志. 多相渗流的多尺度模拟与分析[D]. 北京:清华大学, 2016. LIU G Z. Multiphase flow in porous media by multiscale simulation and analysis[D]. Beijing:Tsinghua University, 2016.
[16] XIE C, ZHANG J, BERTOLA V, et al. Lattice Boltzmann modeling for multiphase viscoplastic fluid flow[J]. Journal of Non-Newtonian Fluid Mechanics, 2016, 234:118-128.
[17] 周陆军, 宣益民, 李强. 纳米流体多相流动的多尺度模拟方法[J]. 计算物理, 2009, 26(6):849-856. ZHOU L J, XUAN Y M, LI Q. Multiscale simulation of multiphase flow in nanofluids[J]. Chinese Journal of Computational Physics, 2009, 26(6):849-856.
[18] 孙海. 页岩气藏多尺度流动模拟理论与方法[D]. 东营:中国石油大学(华东), 2013. SUN H. Multi-scale flow simulation theory and method for shale gas reservoirs[D]. Dongying:China University of Petroleum, 2013.
[19] 张小华, 欧阳洁, 孔倩. 聚合物流动的多尺度模拟[J]. 化工学报, 2007, 58(8):1897-1904. ZHANG X H, OUYANG J, KONG Q. Multi-scale simulation of polymer flow[J]. Journal of Chemical Industry and Engineering(China), 2007, 58(8):1897-1904.
[20] 葛蔚, 刘新华, 任瑛, 等. 从多尺度到介尺度——复杂化工过程模拟的新挑战[J]. 化工学报, 2010, 61(7):1613-1620. GE W, LIU X H, REN Y, et al. From multi-scale to mesoscale:new challenges in complex chemical process simulation[J]. CIESC Journal, 2010, 61(7):1613-1620.
[21] 刘佰奇. 在纳通道中纳米流体传热机理研究及液氩流动过程多尺度模拟[D]. 北京:中国科学院大学, 2012. LIU B Q. Study on heat transfer mechanism of nanofluid in nanochannels and multi-scale simulation of flow in liquid argon[D]. Beijing:University of Chinese Academy of Sciences, 2012.
[22] KHARE R, PABLO J D, YETHIRAJ A. Rheological, thermodynamic, and structural studies of linear and branched alkanes under shear[J]. Journal of Chemical Physics, 1997, 107(17):6956-6964.
[23] LEE S H, CUMMINGS P T. The rheology of n-butane and i-butane by non-equilibrium molecular dynamics simulations[J]. Molecular Simulation, 1996, 16(4/5/6):229-247.
[24] THOMPSON P A, TROIAN S M. A general boundary condition for liquid flow at solid surfaces[J]. Nature, 1997, 389(6649):360-362.
[25] NOBLE D R, CHEN S, GEORGIADIS J G, et al. A consistent hydrodynamic boundary condition for the lattice Boltzmann method[J]. Physics of Fluids, 1995, 7(1):203-209.
[26] YOUNGLOVE B A, ELY J F. Thermophysical properties of fluids(Ⅱ):Methane, ethane, propane, isobutane, and normal butane[J]. Journal of Physical & Chemical Reference Data, 1987, (4):577-798.
[27] STEWART R B, JACOBSEN R T. Thermodynamic properties of argon from the triple point to 1200 K with pressures to 1000 MPa[J]. Journal of Physical & Chemical Reference Data, 1989, 18(2):639-798.
[28] CUMMINGS P T, EVANS D J. Nonequilibrium molecular dynamics approaches to transport properties and non-Newtonian fluid rheology[J]. Industrial & Engineering Chemistry Research, 1992, 31(5):1237-1252.
[29] BORZSAK I, CUMMINGS P, EVANS D. Shear viscosity of a simple fluid over a wide range of strain rates[J]. Molecular Physics, 2002, 100(16):2735-2738.
[30] CUMMINGS P T, WANG B Y, EVANS D J, et al. Nonequilibrium molecular dynamics calculation of self-diffusion in a non-Newtonian fluid subject to a Couette strain field[J]. Journal of Chemical Physics, 1991, 94(3):2149-2158.
[31] BAIR S, MCCABE C, CUMMINGS P T. Comparison of nonequilibrium molecular dynamics with experimental measurements in the nonlinear shear-thinning regime[J]. Physical Review Letters, 2002, 88(5):058302.

[1] 周雪冰, 刘婵娟, 罗金琼, 梁德青. 甲烷水合物分解过程的微尺度测量[J]. 化工学报, 2019, 70(3): 1042-1047.
[2] 王磊, 方桂英, 阳庆元. 金属-有机骨架材料CO2捕获性能的大规模计算筛选[J]. 化工学报, 2019, 70(3): 1135-1143.
[3] 蔡改贫, 宗路, 刘鑫, 罗小燕. 基于MEEMD-多尺度分形盒维数和ELM的球磨机负荷识别方法[J]. 化工学报, 2019, 70(2): 764-771.
[4] 梁馨元, 张磊, 刘琳琳, 都健. 基于分子动力学的橡胶聚合物计算机辅助设计方法[J]. 化工学报, 2019, 70(2): 525-532.
[5] 耿志强, 徐猛, 朱群雄, 韩永明, 顾祥柏. 基于深度学习的复杂化工过程软测量模型研究与应用[J]. 化工学报, 2019, 70(2): 564-571.
[6] 蔡惊涛, 李代禧, 刘宝林, 栾翰森, 郭柏松, 魏冬青, 王浩. 尿素(520)晶面可控结晶的分子动力学模拟[J]. 化工学报, 2019, 70(1): 128-135.
[7] 向文军, 朱朝菊, 刘丹, 周绿山. 分子动力学模拟研究两亲聚合物与疏水纳米粒子自组装核-壳结构[J]. 化工学报, 2019, 70(1): 345-354.
[8] 周刊, 李蔚, 李俊业, 朱华, 盛况, 白光辉, 常浩. 微细通道内超亲水改性表面饱和沸腾的传热特性[J]. 化工学报, 2018, 69(S2): 82-88.
[9] 任滔, 段钟弟, 丁国良. 微肋结构对储罐失压下液化气瞬态暴沸特性的影响[J]. 化工学报, 2018, 69(S2): 512-516.
[10] 李鸿如, 陈岩, 程旭, 杜文静, 衣宝葵, 辛公明. 不同管径毛细管的毛细蒸发特性实验[J]. 化工学报, 2018, 69(S1): 43-47.
[11] 齐畅, 卢滇楠, 刘永民. 优化温度相关力场预测正构烷烃热力学性质[J]. 化工学报, 2018, 69(8): 3338-3347.
[12] 季佳圆, 赵伶玲. 范德华力对Lennard-Jones体黏弹性的影响[J]. 化工学报, 2018, 69(8): 3331-3337.
[13] 冯飙, 邵雪峰, 朱子钦, 范利武. 赤藓糖醇微观固液相变及热传导的分子动力学研究[J]. 化工学报, 2018, 69(6): 2388-2395.
[14] 陈超, 赵伶玲, 王镜凡. 甲胺铅碘钙钛矿物性及制备过程的分子模拟[J]. 化工学报, 2018, 69(6): 2380-2387.
[15] 林琦, 王树刚, 王继红, 宋双林. 球形胶囊内约束熔化过程的LBM模拟[J]. 化工学报, 2018, 69(6): 2373-2379.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!