化工学报 ›› 2019, Vol. 70 ›› Issue (1): 1-9.doi: 10.11949/j.issn.0438-1157.20180315

• 综述与专论 • 上一篇    下一篇

流态化与物质相变的相似性

陈卫(),任瑛   

  1. 中国科学院过程工程研究所多相复杂系统国家重点实验室,北京 100190
  • 收稿日期:2018-03-23 修回日期:2018-09-20 出版日期:2019-01-05 发布日期:2018-09-26
  • 通讯作者: 陈卫 E-mail:chenwei@ipe.ac.cn
  • 作者简介:陈卫(1983—),男,博士研究生,副研究员,<email>chenwei@ipe.ac.cn</email>
  • 基金资助:
    多相复杂系统国家重点实验室自主研究课题项目(MPCS-2017-A-04)

Similarity between fluidization and phase transition

Wei CHEN(),Ying REN   

  1. State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2018-03-23 Revised:2018-09-20 Online:2019-01-05 Published:2018-09-26
  • Contact: Wei CHEN E-mail:chenwei@ipe.ac.cn

摘要:

通常单组分多相系统随着温度的变化会呈现固态、液态和气态三种不同的结构和性质,而固体颗粒和流体组成的多相系统在循环流化床中随着气体流速的升高也会经历鼓泡、湍动和快速流化三种结构。两类体系虽然呈现不同的结构和性质,但是用介科学的概念对体系状态、区域过渡参数、驱动系统状态演变的能力、体系的控制机制等进行类比和分析,其物理根源却大同小异,均为复杂系统中不同控制机制在竞争中协调的必然结果。在对比了流态化与物质的相变两类体系之后,提出了基于能量最小多尺度模型(EMMS)的思想来构建相变理论的主张,从而期望能够充分理解物质的相变这一非平衡动力学过程。

关键词: 相变, 多相流, 流态化, 复杂系统, 竞争, 协调

Abstract:

Generally, single-component multiphase systems exhibit three different structures and properties in solid, liquid, and gaseous state with temperature changes. The multiphase system consisting of solid particles and fluids in a circulating fluidized bed also experiences three structures with the increase of gas flow velocity, namely, bubbling, turbulence and rapid flow. Although the two systems are quite different in structure and nature, using the concept of mesoscience to analyze the state of the system, the transitional parameter, the driving force for the system state evolution and the underlying mechanisms, the two systems turn to be quite similar in nature. Their physical roots are alike in all important essentials, which are the inevitable result of the compromise in competition between different dominant mechanisms in the complex systems. After comparing the fluidization and the phase transition, a new proposition based on the energy minimization multi-scale (EMMS) model is suggested to sufficiently characterize the real non-equilibrium kinetics of phase transition.

Key words: phase change, multiphase flow, fluidization, complex system, compete, coordinate

中图分类号: 

  • TQ 01

图1

固体颗粒和气体的混合系统的流态化过程中随气速增大体系结构的演化"

表1

不同流化形式的比较(以气固系统为例)"

Velocity range Fluidization form Characteristics
0<U g<U mf fixed bed stationary particles locating at bottom with gas flowing through gap
U mfU g<U pt fluidized bed heterogeneous structure with bubble / particle clusters
U ptU g gas-fluidized bed uniform dilute phase transport

图2

三种不同温度下的水循环系统"

图3

颗粒流体系统的相图(颗粒流率G s与颗粒存料量I、气体流速的关系。虚框为稀密相共存线[47])"

图4

单组分物质(以二氧化碳为例)的压强和体积的倒数之间的关系(不同曲线代表不同的温度,且温度由上至下逐渐降低。黑色虚框为气液相共存线。小图为等温线)"

图5

Ar原子系统的动能与势能随温度的变化(图中所有的物理量均采用约化单位)"

图6

控制机制的变化导致结构转变[41] "

表2

气-固流态化和单组分物质系统的对比"

Item Transition parameter Energy to drive state evolution State
1 2 3
gas-solid particle mixing system minimum fluidization velocity U mf,critical velocity U pt at which choking occurs kinetic energy fixed bed fluidization dilute conveying
single component material melting point of solid-liquid phase transition, boiling point of liquid-gas phase transition thermal energy solid liquid gas
comment A→A-B in Fig. 6, A-B→B in Fig. 6 dominated by mechanism A A-B compromise in competition dominated by mechanism B
1 Chandler D . From 50 years ago, the birth of modern liquid-state science[J]. Annual Review of Physical Chemistry, 2017, 68: 19-38.
2 Stanley H E . Introduction to phase transitions and critical phenomena[J]. Physics Today, 1973, 26(1): 71-72.
3 Visintin A . Models of Phase Transitions[M]. Basel: Birkhauser, 1996: 59-70.
4 于渌, 郝柏林, 陈晓松 . 边缘奇迹: 相变和临界现象[M]. 北京: 科学出版社, 2005: 168-200.
Yu L , Hao B L , Chen X S . Phase Transitions and Critical Phenomena[M].Beijing: Science Press, 2005: 168-200.
5 Schinckus C . Ising model, econophysics and analogies[J]. Physica A-Statistical Mechanics and Its Applications, 2018, 508: 95-103.
6 Ostman E , Arnalds U B , Kapaklis V , et al . Ising-like behaviour of mesoscopic magnetic chains[J]. Journal of Physics-Condensed Matter, 2018, 30(36): 365301-365304.
7 Hadjiagapiou I A , Velonakis I N . The random field Ising model in a shifted bimodal probability distribution[J]. Physica A-Statistical Mechanics and Its Applications, 2018, 505: 965-972.
8 Francesco P D , Mathieu P , Chald S N . The two-dimensional Ising model[J]. Physics Today, 1975, 28(1): 89-91.
9 Ruutu V M H , Parts U , Koivuniemi J H , et al . Intrinsic and extrinsic mechanisms of vortex formation in superfluid He-3-B[J]. Journal of Low Temperature Physics, 1997, 107(1/2): 93-164.
10 Balibar S , Caupin F . Supersolidity and disorder[J]. Journal of Physics-Condensed Matter, 2008, 20(17): 173201-173220.
11 Galli D E , Reatto L . Solid He-4 and the supersolid phase: from theoretical speculation to the discovery of a new state of matter? -a review of the past and present status of research[J]. Journal of the Physical Society of Japan, 2008, 77(11): 111010-111026.
12 Kong W , Pei L , Zhang J . Linear dichroism spectroscopy of gas phase biological molecules embedded in superfluid helium droplets[J]. International Reviews in Physical Chemistry, 2009, 28(1): 33-52.
13 Varma C M . Considerations on the mechanisms and transition temperatures of superconductivity induced by electronic fluctuations[J]. Reports on Progress in Physics, 2012, 75(5): 052501-052521.
14 Bulgac A . Time-dependent density functional theory and the real-time dynamics of fermi superfluids[J]. Annual Review of Nuclear and Particle Science, 2013, 63: 97-121.
15 Tsymbalenko V L . Amazing growth of helium crystal facets[J]. Physics-Uspekhi, 2015, 58(11): 1059-1073.
16 Yu Y . The second law of thermodynamics and entropy-decreasing processes with He-4 superflows[J]. Modern Physics Letters B, 2016, 30(29): 1630008-1630014.
17 Green A G , Conduit G , Kruger F . Quantum order-by-disorder in strongly correlated metals[J]. Annual Review of Condensed Matter Physics, 2018, 9: 59-77.
18 Kosterlitz J M . Topological defects and phase transitions[J]. International Journal of Modern Physics B, 2018, 32(13): 1830005-1830020.
19 Dewhughes D . Superconducting: a 15 compounds review[J]. Cryogenics, 1975, 15(8): 435-454.
20 Izyumov Y A , Proshin Y N , Khusainov M G . Competition between superconductivity and magnetism in ferromagnet/superconductor heterostructures[J]. Physics-Uspekhi, 2002, 45(2): 109-148.
21 Pfleiderer C . Superconducting phases of f-electron compounds[J]. Reviews of Modern Physics, 2009, 81(4): 1551-1624.
22 Gabovich A M , Voitenko A I , Ekino T , et al . Competition of superconductivity and charge density waves in cuprates: recent evidence and interpretation[J]. Advances in Condensed Matter Physics, 2010, 2010: 681070-681110.
23 Kirtley J R . Fundamental studies of superconductors using scanning magnetic imaging[J]. Reports on Progress in Physics, 2010, 73(12): 126501-126537.
24 Wilson J A . A perspective on the Fe-based superconductors[J]. Journal of Physics-Condensed Matter, 2010, 22(20): 203201-203228.
25 Carbotte J P , Timusk T , Hwang J . Bosons in high-temperature superconductors: an experimental survey[J]. Reports on Progress in Physics, 2011, 74(6): 066501-066544.
26 Raveau B . Strongly correlated electron systems: from chemistry to physics[J]. Comptes Rendus Chimie, 2011, 14(9): 856-864.
27 王少华, 叶自强, 罗盛 . 高温超导输电电缆的发展现状[J]. 高压电器, 2011, 47(7): 80-85.
Wang S H , Ye Z Q , Luo S . Development status of high temperature superconducting cable[J]. High Voltage Apparatus, 2011, 47(7): 80-85.
28 Ramakrishnan T V . Ginzburg-Landau like theory of high temperature superconductivity in the cuprates: emergent d-wave order[J]. International Journal of Modern Physics B, 2012, 26(10): 1230005-1230032.
29 Kato M , Sato O . Magnetic flux structures of finite superconducting networks[J]. Superconductor Science & Technology, 2013, 26(3): 033001-033027.
30 Tkachov G , Hankiewicz E M . Spin-helical transport in normal and superconducting topological insulators[J]. Physica Status Solidi B-Basic Solid State Physics, 2013, 250(2): 215-232.
31 Suderow H , Guillamon I , Rodrigo J G , et al . Imaging superconducting vortex cores and lattices with a scanning tunneling microscope[J]. Superconductor Science & Technology, 2014, 27(6): 063001-063033.
32 Hosono H , Tanabe K , Takayama-Muromachi E , et al . Exploration of new superconductors and functional materials, and fabrication of superconducting tapes and wires of iron pnictides[J]. Science and Technology of Advanced Materials, 2015, 16(3): 033503-033590.
33 Li C , Wang X , Wang J , et al . The high temperature superconducting filters and its application progress[J]. Chinese Science Bulletin, 2017, 62(34): 4010-4024.
34 Manzeli S , Ovchinnikov D , Pasquier D , et al . 2D transition metal dichalcogenides[J]. Nature Reviews Materials, 2017, 2(8): 17033-17048.
35 Wang H , Li X , Gao G , et al . Hydrogen-rich superconductors at high pressures[J]. Wiley Interdisciplinary Reviews-Computational Molecular Science, 2018, 8(1): 1330-1343.
36 刘新华, 高士秋, 李静海 . 循环流化床中颗粒团聚物性质的PDPA测量[J]. 化工学报, 2004, 55(4): 555-562.
Liu X H , Gao S Q , Li J H . Characteristics of particle clusters in gas-solids circulating fluidized beds by using PDPA[J]. Journal of Chemical Industry and Engineering(China), 2004, 55(4): 555-562.
37 王利民, 邱小平, 李静海 . 气固两相流介尺度LBM-DEM模型[J]. 计算力学学报, 2015, 32(5): 685-692.
Wang L M , Qiu X P , Li J H . Mesoscale LBM-DEM model for gas-solid two-phase flow[J]. Chinese Journal of Computational Mechanics, 2015, 32(5): 685-692.
38 Li J . Mesoscales: the path to transdisciplinarity[J]. Chemical Engineering Journal, 2015, 277: 112-115.
39 杨宁, 李静海 . 化学工程中的介尺度科学与虚拟过程工程: 分析与展望[J]. 化工学报, 2014, 65(7): 2403-2409.
Yang N , Li J H . Mesoscience in chemical engineering and virtual process engineering: analysis and perspective[J]. CIESC Journal, 2014, 65(7): 2403-2409.
40 欧阳洁, 李静海, 孙国刚, 等 . 气固流态化动态特征的模拟[J]. 应用基础与工程科学学报, 2002, 10(4): 338-346.
Ouyang J , Li J H , Sun G G , et al . Simulation of dynamic characteristics for gas-solid fluidization[J]. Journal of Basic Science and Engineering, 2002, 10(4): 338-346.
41 Li J . Exploring the logic and landscape of the knowledge system: multilevel structures, each multiscaled with complexity at the mesoscale[J]. Engineering, 2016, 2(3): 276-285.
42 郭慕孙, 化学工程的多层次结构[J]. 化学工程, 2007, 35(10): 75-78.
Guo M S . Hierarchical structure of chemical engineering[J]. Chemical Engineering(China), 2007, 35(10): 75-78.
43 李洪钟, 郭慕孙 . 回眸与展望流态化科学与技术[J]. 化工学报, 2013, 64(1): 52-62.
Li H Z , Kwauk M . Review and prospect of fluidization science and technology[J]. CIESC Journal, 2013, 64(1): 52-62.
44 Schgerl K . Biofluidization: application of the fluidization technique in biotechnology[J]. Canadian Journal of Chemical Engineering, 2010, 67(2): 178-184.
45 徐骥, 卢利强, 葛蔚, 等 . 基于EMMS范式的离散模拟及其化工应用[J]. 化工学报, 2016, 67(1): 14-26.
Xu J , Lu L Q , Ge W , et al . Discrete simulation based on EMMS paradigm and its applications in chemical engineering[J]. CIESC Journal, 2016, 67(1): 14-26.
46 刘雅宁, 鲁波娜, 卢利强, 等 . 基于EMMS模型的大型催化裂化装置再生器气固分布数值模拟[J]. 化工学报, 2015, 66(8): 2911-2919.
Liu Y N , Lu B N , Lu L Q , et al . EMMS-based numerical simulation on gas and solids distribution in large-scale FCC regenerators[J]. CIESC Journal, 2015, 66(8): 2911-2919.
47 Li J , Ge W , Wang W , et al . From Multiscale Modeling to Meso-Science[M]. New York: Springer, 2013.
48 Sawada H , Okada M , Nakagawa S . Measurement of latent heat of melting of thermal storage materials for dynamic type ice thermal storage[J]. Transactions of the Japan Society of Refrigerating & Air Conditioning Engineers, 2011, 20(2): 205-214.
49 Gesari S , Irigoyen B , Juan A . An experiment on the liquid-vapor equilibrium for water[J]. American Journal of Physics, 1996, 64(64): 1165-1168.
50 Andrews T .The Bakerian lecture: on the continuity of the gaseous and liquid states of matter[J]. Philosophical Transactions of the Royal Society of London, 1869, 159: 575-590.
51 Li J . Particle-fluid Two-phase Flow—the Energy-Minimization Multi-scale Method[M]. Beijing: Metallurgical Industry Press, 1994: 1-200.
52 Balescu R . Equilibrium and Nonequilibrium Statistical Mechanics[M]. New York: Wiley, 1975: 570-574.
53 Mayer J E , Mayer M G . Statistical Mechanics[M]. New York: Wiley, 1977: 29-49.
54 Pathria R K . Statistical Mechanics[M]. 2 ed. New York: Academic Press, 1996: 57-69.
55 Sethna J P , Coppersmith S . Statistical Mechanics: Entropy, Order Parameters[M]. Oxford: Oxford University Press, 2006: 429-430.
56 Li J , Ge W , Wang W , et al . Meso-scale Modeling: the EMMS Model for Gas-solid Systems[M]. New York: Springer, 2013: 47-89.
57 Li J , Huang W . Towards Mesoscience: the Principle of Compromise in Competition[M]. New York: Springer, 2014: 1-76.
58 Li J , Ge W , Wang W , et al . Focusing on mesoscales: from the energy-minimization multiscale model to mesoscience[J]. Current Opinion in Chemical Engineering, 2016, 13(S1): 10-23.
59 Li J , Ge W , Wang W , et al . Focusing on the meso-scales of multi-scale phenomena-in search for a new paradigm in chemical engineering[J]. Particuology, 2010, 8(6): 634-639.
60 Li J , Huang W , Ge W . Multilevel and multiscale PSE: challenges and opportunities at mesoscales[C]//Eden M R, Ierapetritou M G, Towler G P.Computer Aided Chemical Engineering. Amsterdam: Elsevier, 2018: 11-19.
61 赵凯华, 罗蔚茵 . 新概念物理教程: 热学[M] 北京: 高等教育出版社, 2005: 69.
Zhao K H , Luo W Y . New Concept Physics Course: Thermodynamics[M]. Beijing: Higher Education Press, 2005: 69.
62 Paolantoni M , Lago N F , Albert M , et al . Tetrahedral ordering in water: Raman profiles and their temperature dependence[J]. Journal of Physical Chemistry A, 2009, 113(52): 15100.
63 Tokushima T , Harada Y , Takahashi O , et al . High resolution X-ray emission spectroscopy of liquid water: the observation of two structural motifs[J]. Chemical Physics Letters, 2008, 460(4): 387-400.
64 Tokushima T , Harada Y , Horikawa Y , et al . High resolution X-ray emission spectroscopy of water and its assignment based on two structural motifs[J]. Journal of Electron Spectroscopy & Related Phenomena, 2010, 177(2): 192-205.
65 Wikfeldt K T .Structure, dynamics and thermodynamics of liquid water: insights from molecular simulations [D]. Stockholm: Stockholm University, 2011.
66 Wikfeldt K T , Nilsson A , Pettersson L G . Spatially inhomogeneous bimodal inherent structure of simulated liquid water[J]. Physical Chemistry Chemical Physics, 2011, 13(44): 19918-19924.
67 Frenkel D , Smit B . Understanding molecular simulation: from algorithms to applications[M]. 2 ed. New York: Academic Press, 1996: 63-105.
68 Patashinski A Z , Mitus A C , Ratner M A . Towards understanding the local structure of liquids[J]. Physics Reports, 1997, 288(1-6): 409-434.
69 Müller I . Entropy and energy—a universal competition[J]. Entropy, 2008, 10(4): 462-476.
70 Li J H , Huang W L , Chen J H , et al . Mesoscience based on the EMMS principle of compromise in competition[J]. Chemical Engineering Journal, 2018, 333: 327-335.
[1] 陈华, 柳秀丽, 杨亚星, 钟丽琼, 王蕾, 高娜. 泡沫金属铜/石蜡相变蓄热过程的数值模拟[J]. 化工学报, 2019, 70(S1): 86-92.
[2] 李文玉, 孙亮亮, 袁艳平, 曹晓玲, 向波. 太阳能热水相变炕体蓄放热性能及影响因素[J]. 化工学报, 2019, 70(5): 1761-1771.
[3] 苏武, 石孝刚, 吴迎亚, 高金森, 蓝兴英. 乙炔加氢制乙烯浆态床反应器的CFD模拟[J]. 化工学报, 2019, 70(5): 1858-1867.
[4] 周麟晨, 孙志高, 陆玲, 王赛, 李娟, 李翠敏. 有机相变乳液中HCFC–141b水合物生成及稳定性[J]. 化工学报, 2019, 70(5): 1674-1681.
[5] 王慧儒, 刘振宇, 姚元鹏, 吴慧英. 组合相变材料强化固液相变传热可视化实验[J]. 化工学报, 2019, 70(4): 1263-1271.
[6] 王舜浩, 朱文俐, 胡正根, 周芮, 余柳, 王彬, 张小斌. 液氢缩比贮箱蒸发特性数值模拟及实验验证[J]. 化工学报, 2019, 70(3): 840-849.
[7] 王耀武, 彭建平, 狄跃忠, 蒿鹏程. 铝电解槽干式防渗料在电解过程中的反应机理探讨[J]. 化工学报, 2019, 70(3): 1035-1041.
[8] 韦攀, 喻家帮, 郭增旭, 杨肖虎, 何雅玲. 环形管填充金属泡沫强化相变蓄热可视化实验[J]. 化工学报, 2019, 70(3): 850-856.
[9] 刘小诗, 邹得球, 贺瑞军, 马先锋. 氧化石墨烯/石蜡复合相变乳液的制备及对流传热特性[J]. 化工学报, 2019, 70(3): 1188-1197.
[10] 周鑫, 邓乐东, 王宏, 朱恂, 陈蓉, 廖强, 丁玉栋. 圆柱壁面上液滴凝固相变对其运动行为的影响[J]. 化工学报, 2019, 70(3): 883-891.
[11] 刘英杰, 祝京旭. 气泡驱动液固流化床内二元颗粒的流化行为[J]. 化工学报, 2019, 70(1): 91-98.
[12] 周孙希, 章学来, 刘升, 陈启杨, 徐笑锋, 王迎辉. 癸醇-棕榈酸/膨胀石墨低温复合相变材料的制备与性能[J]. 化工学报, 2019, 70(1): 290-297.
[13] 张亮, 史忠科. 相变储能技术在汽车节能中的应用进展[J]. 化工学报, 2018, 69(S2): 17-25.
[14] 万星晨, 林文胜. 螺旋管丙烷流动沸腾换热特性[J]. 化工学报, 2018, 69(S2): 135-140.
[15] 周刊, 李蔚, 李俊业, 朱华, 盛况, 白光辉, 常浩. 微细通道内超亲水改性表面饱和沸腾的传热特性[J]. 化工学报, 2018, 69(S2): 82-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] 雷志刚, 龙爱斌, 贾美如, 刘学义. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] 粟海锋, 刘怀坤, 王凡, 吕小艳, 文衍宣. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] 王建林, 薛尧予, 于涛, 赵利强. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] 孙付保, 毛忠贵, 张建华, 张宏建, 唐蕾, 张成明, 张静, 翟芳芳. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] 高瑞昶,宋宝东,袁孝竞. 气液两相逆流状态下金属板波纹填料塔内液体流动分布 [J]. , 1999, 50(1): 94 -100 .
[7] 苏亚欣,骆仲泱,岑可法. 换热器肋片的最小熵产优化研究 [J]. , 1999, 50(1): 118 -124 .
[8] 罗小平,邓先和,邓颂九. 空心环支承轴流式换热器壳程流体阻力系数 [J]. , 1999, 50(1): 130 -135 .
[9] 金文正,高广图,屈一新,汪文川. 甲烷、苯无限稀释水溶液亨利常数的Monte Carlo分子模拟计算 [J]. , 1999, 50(2): 174 -184 .
[10] P>李庆钊;赵长遂;陈晓平;武卫芳;李英杰/P>.

O2/CO2气氛煤焦的燃烧及其孔隙结构变化

[J]. , 2008, 59(11): 2891 -2897 .