化工学报 ›› 2019, Vol. 70 ›› Issue (1): 107-115.doi: 10.11949/j.issn.0438-1157.20180307

• 流体力学与传递现象 • 上一篇    下一篇

高温区大冷量脉管制冷机优化设计与实验特性

邓伟峰(),蒋珍华,刘少帅,张安阔,吴亦农()   

  1. 中国科学院上海技术物理研究所,上海 200083
  • 收稿日期:2018-03-22 修回日期:2018-10-08 出版日期:2019-01-05 发布日期:2018-10-25
  • 通讯作者: 吴亦农 E-mail:dwf@mail.sitp.ac.cn;wyn@mail.sitp.ac.cn
  • 作者简介:邓伟峰(1987—),男,博士,助理研究员,<email>dwf@mail.sitp.ac.cn</email>|吴亦农(1968—),男,研究员,<email>wyn@mail.sitp.ac.cn</email>
  • 基金资助:
    国家自然科学基金项目(51741610)

Optimization design and experimental properties of high-temperature and high-capacity pulse tube cooler

Weifeng DENG(),Zhenhua JIANG,Shaoshuai LIU,Ankuo ZHANG,Yinong WU()   

  1. Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • Received:2018-03-22 Revised:2018-10-08 Online:2019-01-05 Published:2018-10-25
  • Contact: Yinong WU E-mail:dwf@mail.sitp.ac.cn;wyn@mail.sitp.ac.cn

摘要:

设计了一台名义制冷量为50 W/170 K的大冷量脉管制冷机,采用对置活塞式动磁线性压缩机驱动,冷指的蓄冷器和脉管部件为同轴布置,采用惯性管-气库组合的被动调相机构。根据电磁-机械-声耦合场原理,建立了脉管制冷机动力学模型,对负载下的压缩机特性进行了动态仿真。为达到整机的谐振状态,对压缩机质量-弹簧系统进行了调整。整机质量(不含电控部分)小于12 kg。在230 W输入电功下,能够获得50 W/170 K的制冷性能,电机效率92.7%,整机比卡诺效率16.5%。150~200 K温区范围内制冷机比功(输入电功/制冷量)小于5 W/W,额定输入功下,200 K温区能够获得90 W的最大制冷量,该制冷机可以用于航天大型红外焦平面阵列的冷却,同时为-60~-20℃制冷温区的商业低温冰箱低温冷源的选择提供了参考。

关键词: 高温区, 大冷量, 脉管制冷机, 线性压缩机, 动力学模型, 动态仿真, 优化设计

Abstract:

A high-capacity pulse tube cooler (PTC) with nominal cooling of 50 W/170 K is presented in this paper. It is driven by an opposed-piston dynamic magnetic linear compressor. The regenerator and pulse tube are arranged in coaxial. The inertance tube and reservoir are used as passive phase shifter of the PTC. Based on the principle of electrical-mechanical-acoustic coupling field, a dynamic model of the PTC is proposed and transient simulation was conducted on the characteristics of the compressor under load. The mass-spring system of the compressor is improved to make the PTC resonant. The mass of the PTC is less than 12 kg without electric control equipment. A performance of 50 W/170 K is achieved with 230 W electrical power while the motor efficiency and related Carnot efficiency are 92.7% and 16.5% respectively. The specific power (electrical power/cooling power) is less than 5 W/W at the temperature range of 150—200 K. Under the rated input power, the maximum cooling power reaches 90 W@200 K. The PTC can be used for space to cool down giant Infrared Focal Plane Array (IRFPA) and provide an alternative to domestic refrigerator as cold source at the temperature range of -60—-20℃ as well.

Key words: high-temperature, high-capacity, pulse tube cooler, linear compressor, dynamic model, transient simulation, optimization design

中图分类号: 

  • TB 651

图1

同轴型脉管制冷机主要结构示意图"

图2

脉管制冷机声阻抗图"

表1

脉管冷指主要结构参数"

参数数值参数数值
蓄冷器长度47 mm惯性管Ⅰ?3×0.8 mm
蓄冷器内径13.5 mm惯性管Ⅱ? 4.5×0.8 mm
蓄冷器外径26 mm气库容积250 ml
脉管长度63 mm活塞直径26 mm
脉管内径13 mm活塞冲程±6 mm

图3

线性压缩机电磁-机械-声耦合场系统"

图4

活塞受力矢量图"

图5

基于Simplore和Maxwell的脉管制冷机联合仿真"

图6

脉管制冷机实验装置示意图"

图7

制冷机样机"

图8

负载下压缩机电流随频率的变化曲线"

图9

压缩机负载下活塞行程随频率的变化曲线"

图10

制冷机COP随频率的变化曲线"

图11

制冷机在170K时的性能曲线"

图12

制冷机无负载降温曲线"

图13

制冷机150~200 K温区范围内的性能曲线"

图14

制冷机在-60、-40和-20℃下的制冷性能曲线"

图15

压缩机电声效率随制冷量的变化"

图16

铜损耗PCu与其他损耗占比随制冷量的变化"

1 DavisT, TomlinsonbJ, LedbetterJ. Military space cryogenic cooling requirements for the 21st century[C]// Proceedings of 11th International Cryocooler Conference. California, America, 2001: 1-9.
2 RossR G. Aerospace coolers: 50-year quest for long-life cryogenic cooling in space[M]// Timmerhaus K D, Reed R P. Cryogenic Engineering: Fifty Years of Progress. New York: Springer, 2007: 225-284.
3 GroepW L, MullieJ C, WillemsW J, et al. Development of a 15 W coaxial pulse tube cooler[C]// Proceedings of 15th International Cryocooler Conference. California, America, 2009: 157-165.
4 RadebaughR. Thermodynamics of regenerative refrigerator[J]. Generation of Low Temperature and its Applications, 2003, (5): 1-20.
5 戴巍. 热声制冷技术的研究前沿及进展[J]. 化工学报, 2008, 59(S2): 14-22.
DaiW. Advances in thermoacoustic refrigeration[J]. Journal of Chemical Industry and Engineering (China), 2008, 59(S2): 14-22.
6 ZhuS W, WuP Y, ChenZ Q. Double inlet pulse tube refrigerators: an important improvement[J]. Cryogenics, 1990, 30(6): 514-520.
7 van der WaltN R, ReuvenU. Linear electrodynamic machine: US 5389844[P]. 1995-09-21.
8 ZhuS W, MatsubaraY. A numerical method of regenerator[J]. Cryogenics, 2004, 44(2): 131-140.
9 GaryJ, O’GallagherA, RadebaughR, et al. REGEN 3.3:User Manual[M]. National Institute of Standards and Technology, 2008.
10 RadebaughR, ZimmermanJ, SmithD R, et al. A comparison of three types pulse tube refrigerators: new methods for reaching 60K[C]// Kittel P. Advanced in Cryogenic Engineering. Vol.31. Proceedings of the Cryogenic Engineering Conference. New York, America, 1986: 779-789.
11 RoachP R, KashaniA. Pulse tube coolers with an inertance tube: theory, modeling and practice[C]// Kittel P. Advanced in Cryogenic Engineering. Vol.43. Proceedings of the Cryogenic Engineering Conference. New York, America, 1998: 1895-1902.
12 GedeonD. Sage User s Guide[M]. Gedeon Associates, 2009.
13 ClarkJ P, WardW C, SwiftG W. Design environment for low-amplitude thermoacoustic energy conversion[J]. The Journal of the Acoustical Society of America, 2007, 122(5). DOI: 10.1121/1.2942768.
doi: 10.1121/1.2942768.
14 DurandD, NguyenT, TwardE. High efficiency cryocooler performance[C]// Proceedings of the Cryogenic Engineering Conference. New York, 2014: 97-104.
15 WiertzT, UrbanoJ. Qualification of a European large pulse tube cooler system for space applications[C]// Proceedings of 19th International Cryocooler Conference. California, America, 2016: 17-154.
16 黄宇, 胡剑英, 戴巍, 等.高效同轴脉冲管制冷机性能的实验研究[J].工程热物理学报, 2011, 32(2): 189-192.
HuangY, HuJ Y, DaiW, et al. Experimental study of a high efficiency coaxial pulse tube cryocooler[J]. Journal of Engineering Thermophysics, 2011, 32(2): 189-192.
17 ArtsR, MullieJ, TanchonT, et al. LPT6510 Pulse tube cooler for 60—150 K applications[C]// Proceedings of 19th International Cryocooler Conference. California, America, 2016: 155-159.
18 ChassaingC, ButterworthJ, AigouyG, et al. 150 K—200 K Pulse tube cooler for micro satellites[C]// Proceedings of 18th International Cryocooler Conference. New York, America, 2014: 79-86.
19 MaiM, RosenhagenC, RuehlichI. Development of single piston moving magnet cryocooler SX020[C]// Proceedings of 18th International Cryocooler Conference. New York, 2014: 65-71.
20 ZhangA K, WuY N, LiuS S, et al. Experiment study of a coaxial pulse tube cryocooler[C]//Proceedings of 18th International Cryocooler Conference. New York, America, 2014: 151-154.
21 LiuS S, ChenX, ZhangA K, et al. Investigation on phase shifter of a 10 W/70 K inertance pulse tube refrigerator[J]. International Journal of Refrigeration, 2017, 74: 448-455.
22 刘少帅, 张华, 张安阔, 等. 80 K脉管制冷机惯性管调相机理及优化研究[J]. 制冷学报, 2016, 37(5): 100-105.
LiuS S, ZhangH, ZhangA K, et al. Theory and optimization study of inertance tube of 80 K pulse tube refrigerator[J]. Journal of Refrigeration, 2016, 37(5): 100-105.
23 ZhangA K, ChenX, WuY N, et al. Study on a 10 W/90 K in-line pulse tube cryocooler[J]. Cryogenics, 2012, 52: 800-804.
24 KiT, JeongS. Optimal design of the pulse tube refrigerator with slit-type heat exchangers[J]. Cryogenics, 2010, 50: 608-614.
25 KiT, JeongS. Stirling-type pulse tube refrigerator with slit-type heat exchangers for HTS superconducting motor[J]. Cryogenics, 2011, 51(6): 341-346.
26 刘少帅, 张安阔, 陈曦, 等. 惯性管盘绕方式对脉管制冷机性能的影响[J]. 化工学报, 2016, 67(5): 1791-1797.
LiuS S, ZhangA K, ChenX, et al. Effect of coiling ways of inertance tube on performance of pulse tube cryocooler[J]. CIESC Journal, 2016, 67(5): 1791-1797.
27 TominagaA. Thermoacoustic theory and its applications to refrigerators[C]// Proceedings of Third Japanese-Sino Joint Seminar on Small Refrigerators and Related Topics. Okayama, Japan:1989: 141-146.
28 SwiftG. Thermoacoustic engines[J]. Journal of the Acoustical Society of America, 1988, 84(4): 1145-1180.
29 SwiftG. Thermoacoustics: a unifying perspective for some engines and refrigerators[J]. Journal of the Acoustical Society of America, 2003, 113: 96-105.
30 WakelandR S. Use of electrodynamic drivers in thermoacoustic refrigerators[J]. Journal of the Acoustical Society of America, 2000, 107(2): 827-832.
31 GanZ H, WangL Y, ZhaoS Y, et al. Acoustic impedance characteristics of linear compressors[J]. Journal of Zhejiang University-Science A (Applied Physics & Engineering), 2013, 14(7): 494-503.
32 RossR G, JohnsonD L, MonG, et al. Cryocooler resonance characterization[J]. Cryogenics. 1994, 34(5): 435-442.
[1] 杨世品, 黄振, 李丽娟, 宋健全, 叶景, 汪辉. 复杂化工过程失配子模型深度诊断与修正算法[J]. 化工学报, 2019, 70(4): 1485-1493.
[2] 吴降麟, 张朝晖, 王亮, 赵斌, 李腾飞, 陈萌萌. 宽流道反渗透膜元件抗污染性能分析[J]. 化工学报, 2019, 70(4): 1446-1454.
[3] 徐奇超, 江锦波, 彭旭东, 李纪云, 王玉明. 基于遗传算法的干气密封双向槽统一模型与参数优化[J]. 化工学报, 2019, 70(3): 995-1005.
[4] 杨杰, 祁江羽, 沙勇. 反应精馏隔壁塔制甲缩醛过程模拟与分析[J]. 化工学报, 2019, 70(3): 960-968.
[5] 黄秀辉, 王俊, 崔国民. PTA装置醋酸脱水塔的动态模拟及控制策略分析[J]. 化工学报, 2019, 70(2): 625-633.
[6] 朱顺, 郭琦, 张大伟, 杨庆春. 集成CO2高效利用的煤制乙二醇过程设计与系统分析[J]. 化工学报, 2019, 70(2): 772-779.
[7] 胡松, 李进龙, 李木金, 杨卫胜. 萃取精馏生产高纯度环氧丙烷的工艺研究[J]. 化工学报, 2019, 70(2): 670-677.
[8] 叶贞成, 周换兰, 饶德宝. 乙炔加氢反应过程混合建模与优化[J]. 化工学报, 2019, 70(2): 496-507.
[9] 王少靖, 刘琳琳, 张磊, 都健, 吴恺艺. 集成NGL回收的新型天然气液化系统AP-XTM的概念设计与模拟分析[J]. 化工学报, 2019, 70(2): 508-515.
[10] 薛永飞, 王雅琳, 孙备, 李钱钟, 孙家舟. 基于改进状态转移算法的串级平推流反应器动力学参数估计[J]. 化工学报, 2019, 70(2): 607-616.
[11] 陈海胜, 王腾飞, 黄克谨, 苑杨, 钱行, 张亮. 外部环流反应精馏塔的分散控制方案设计[J]. 化工学报, 2019, 70(2): 440-449.
[12] 翟坤, 杜文霞, 吕锋, 辛涛, 句希源. 一种改进的动态核主元分析故障检测方法[J]. 化工学报, 2019, 70(2): 716-722.
[13] 丁炯, 陈琪, 许启跃, 杨遂军, 叶树亮. 融合C80数据的绝热加速量热法热惯量因子修正[J]. 化工学报, 2019, 70(1): 417-424.
[14] 李挺, 贾卓泰, 张庆华, 杨超, 毛在砂. 几种单层桨搅拌槽内宏观混合特性的比较[J]. 化工学报, 2019, 70(1): 32-38.
[15] 张国磊, 孙瑞, 张晓宇, 冯永明, 马庆阳. 快速降负荷船用涡轮增压机组动态特性仿真[J]. 化工学报, 2018, 69(S2): 316-323.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] 雷志刚, 龙爱斌, 贾美如, 刘学义. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] 粟海锋, 刘怀坤, 王凡, 吕小艳, 文衍宣. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] 王建林, 薛尧予, 于涛, 赵利强. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] 孙付保, 毛忠贵, 张建华, 张宏建, 唐蕾, 张成明, 张静, 翟芳芳. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] 高瑞昶,宋宝东,袁孝竞. 气液两相逆流状态下金属板波纹填料塔内液体流动分布 [J]. , 1999, 50(1): 94 -100 .
[7] 苏亚欣,骆仲泱,岑可法. 换热器肋片的最小熵产优化研究 [J]. , 1999, 50(1): 118 -124 .
[8] 罗小平,邓先和,邓颂九. 空心环支承轴流式换热器壳程流体阻力系数 [J]. , 1999, 50(1): 130 -135 .
[9] 金文正,高广图,屈一新,汪文川. 甲烷、苯无限稀释水溶液亨利常数的Monte Carlo分子模拟计算 [J]. , 1999, 50(2): 174 -184 .
[10] P>李庆钊;赵长遂;陈晓平;武卫芳;李英杰/P>.

O2/CO2气氛煤焦的燃烧及其孔隙结构变化

[J]. , 2008, 59(11): 2891 -2897 .