化工学报 ›› 2018, Vol. 69 ›› Issue (8): 3338-3347.doi: 10.11949/j.issn.0438-1157.20180294

• 热力学 • 上一篇    下一篇

优化温度相关力场预测正构烷烃热力学性质

齐畅1, 卢滇楠2, 刘永民1   

  1. 1 辽宁石油化工大学化学化工与环境学院部, 辽宁 抚顺 113001;
    2 化学工程联合国家重点实验室, 清华大学化学工程系, 北京 100084
  • 收稿日期:2018-03-20 修回日期:2018-05-03 出版日期:2018-08-05 发布日期:2018-05-18
  • 通讯作者: 刘永民, 卢滇楠 E-mail:liu79ym@tom.com;ludiannan@tsinghua.cn
  • 基金资助:

    国家自然科学基金项目(21476125)。

Prediction of thermodynamic properties of n-alkanes based on temperature-corrected force field

QI Chang1, LU Diannan2, LIU Yongmin1   

  1. 1 College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, Liaoning, China;
    2 State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
  • Received:2018-03-20 Revised:2018-05-03 Online:2018-08-05 Published:2018-05-18
  • Supported by:

    supported by the National Natural Science Foundation of China (21476125).

摘要:

为了实现不同温度下正构烷烃及其混合物热力学性质的准确预测,以正构烷烃(n-C4~C10)为训练集,通过对全原子OPLS-AA力场中非键相互作用参数(ε)的模拟优化,得到了ε与对比温度(Tr)以及正构烷烃碳原子个数(NC)的经验关系式。利用该关系式计算出不同温度不同种类的正构烷烃的ε值,预测了正构烷烃纯物质及其混合物的黏度、密度、扩散系数等物性,并将新力场模拟计算值与理论估算值以及实验值进行比较。结果表明,采用优化温度相关力场预测烷烃及其混合物的物性与实验值最为吻合。密度、黏度和扩散系数的预测值与实验值的相对偏差分别小于2%、5%和10%,显著优于目前的理论方法和原OPLS-AA力场模拟计算的预测值。上述温度相关力场参数的确立,对于利用分子动力学模拟方法准确地预测正构烷烃及其混合物的热力学性质具有重要的实际应用价值。

关键词: 正构烷烃, 分子模拟, 热力学性质, 力场优化, 分子动力学, 非平衡分子动力学

Abstract:

Aim to accurately predict the thermodynamic properties of n-alkanes and their mixtures at different temperature, in this paper, the non-bond Lennard-Jones (L-J) interaction parameter, ε, was optimized by using n-C4-C10 as the training set and all-atom molecular dynamics simulations. Here an empirical relationship between the L-J parameter (ε) and the reduced temperature (Tr) and carbon atomic number of n-alkanes (NC) was obtained. According to above-mentioned relationship, the values of ε at different temperatures were successfully calculated. Further, the properties of viscosity, density and diffusion coefficient of different n-alkanes and their mixtures were predicted using traditional and non-equilibrium molecular dynamics simulations with all-atom OPLS-AA force field corrected by temperature-dependent ε. Compared with previous theoretical prediction values and experimental data, the prediction with temperature-dependent ε showed that the physical properties of n-alkanes and their mixtures predicted by this method were in the best agreement with the experimental values. The relative deviations between the predicted values of density, viscosity and diffusion coefficient and their corresponding experimental counterparts were less than 2%, 5% and 10%, respectively. The new predicted values are significantly superior to those predicted by both other theoretical methods and molecular dynamics simulations with the original OPLS-AA force field. Therefore, the established temperature-dependent force field has important practical application value for accurately predicting the thermodynamic properties of n-alkanes and their mixtures by molecular dynamics simulations.

Key words: n-alkanes, molecular simulation, thermodynamic property, force field optimization, molecular dynamics simulation, non-equilibrium molecular dynamic simulation

中图分类号: 

  • TQ021.2

[1] CRETON B, DE B T, LACHET V, et al. Extension of a charged anisotropic united atoms model to polycyclic aromatic compounds[J]. Journal of Physical Chemistry B, 2010, 114(19):6522-6530.
[2] FENG H, GAO W, NIE J, et al. MD simulation of self-diffusion and structure in some n-alkanes over a wide temperature range at high pressures[J]. Journal of Molecular Modeling, 2013, 19(1):73-82.
[3] 李蕾, 李书实, 王长生. 带电组氨酸侧链与DNA碱基间非键作用强度的理论研究[J]. 高等学校化学学报, 2017, 38(1):56-62. LI L, LI S S, WANG C S. Theoretical studies on noncovalent interactions between charged histidine side chain and DNA base[J]. Chemical Journal of Chinese Universities, 2017, 38(1):56-62.
[4] LIWO A, O?DZIEJ S, PINCUS M R, et al. A united residue force field for off lattice protein structure simulations(Ⅰ):Functional forms and parameters of long range side chain interaction potentials from protein crystal data[J]. Journal of Computational Chemistry, 1997, 18(7):849-873.
[5] CHEN P, NISHIYAMA Y, MAZEAU K. Atomic partial charges and one Lennard-Jones parameter crucial to model cellulose allomorphs[J]. Cellulose, 2014, 21(4):2207-2217.
[6] 王琳琳. 烯烃类分子第一性原理分子力学力场的建立和应用[D]. 上海:上海交通大学, 2009. WANG L L. Development and application of a first-principle force field for alkenes[D]. Shanghai:Shanghai Jiao Tong University, 2009.
[7] 王玲, 李晓锋, 赵立峰, 等. 醛酮类化合物的分子力场参数推导及热力学性质计算[J]. 化学学报, 2009, 67(23):2669-2677. WANG L, LI X F, ZHAO L F, et al. Force field development and predictions of thermodynamic properties for aldehydes and ketones[J]. Acta Chimica Sinica, 2009, 67(23):2669-2677.
[8] 戴建兴. 分子力场方法预测混合液体性质及分子间相互作用研究[D]. 上海:上海交通大学, 2011. DAI J X. Prediction of mixture liquid properties using force field method and inter molecular interaction study[D]. Shanghai:Shanghai Jiao Tong University, 2011.
[9] 王琳琳, 李晓锋, 孙淮. 烯烃类分子的分子力学力场及热力学性质预测[J]. 计算机与应用化学, 2009, 26(12):1547-1552. WANG L L, LI X F, SUN H. Force field development and prediction of thermodynamic properties for alkenes[J]. Computer and Applied Chemistry, 2009, 26(12):1547-1552.
[10] 李晓锋, 吴智勇, 何文军, 等. 分子模拟方法预测流体热力学性质[J]. 计算机与应用化学, 2011, 28(8):21-24. LI X F, WU Z Y, HE W J, et al. Application of pinch technology for epichlorohydrin production via propylene acetate method[J]. Computer and Applied Chemistry, 2011, 28(8):21-24.
[11] LI X, ZHAO L, CHENG T, et al. One force field for predicting multiple thermodynamic properties of liquid and vapor ethylene oxide[J]. Fluid Phase Equilibria, 2008, 274(1/2):36-43.
[12] DAI J, LI X, ZHAO L, et al. Enthalpies of mixing predicted using molecular dynamics simulations and OPLS force field[J]. Fluid Phase Equilibria, 2010, 289(2):156-165.
[13] LINDAHL E, HESS B, GROENHOF G, et al. GROMACS:fast, flexible, and free[J]. Journal of Computational Chemistry, 2005, 26(16):1701-1718.
[14] HESS B. Determining the shear viscosity of model liquids from molecular dynamics simulations[J]. Journal of Chemical Physics, 2002, 116(1):209-217.
[15] ALLEN M P, TILDESLEY D J. Computer Simulations of Liquids[M]. Oxford:Oxford Science Publications, 1987:385.
[16] OLIVEIRA C M B P, WAKEHAM W A. The viscosity of five liquid hydrocarbons at pressures up to 250 MPa[J]. International Journal of Thermophysics, 1992, 13(5):773-790.
[17] KUMAGAI A, TAKAHASHI S. Viscosity and density of liquid mixtures of n-alkanes with squalane[J]. International Journal of Thermophysics, 1995, 16(3):773-779.
[18] CHAPPELOW C C, SNYDER P S, WINNICK J. Density of liquid n-octane[J]. Journal of Chemical & Engineering Data, 1971, 16(4):440-442.
[19] REGUEIRA T, PANTELIDE G, YAN W, et al. Density and phase equilibrium of the binary system methane + n-decane under high temperatures and pressures[J]. Fluid Phase Equilibria, 2016, 428(1):48-61.
[20] SANTOS T V M, PEREIRA M F V, AVELINO H M N T, et al. Viscosity and density measurements on liquid n-tetradecane at moderately high pressures[J]. Fluid Phase Equilibria, 2017, 453(1):46-57.
[21] GLOS S, KLEINRAHM R. Measurement of the (p, ρ, T) relation of propane, propylene, n-butane, and isobutane in the temperature range from (95 to 340) K at pressures up to 12 MPa using an accurate two-sinker densimeter[J]. The Journal of Chemical Thermodynamics, 2004, 36(12):1037-1059.
[22] SCHILLING G, KLEINRAHM R, WAGNER, W. Measurement and correlation of the (p, ρ, T) relation of liquid n-heptane, n-nonane, 2, 4-dichlorotoluene, and bromobenzene in the temperature range from (233.15 to 473.15)K at pressures up to 30 MPa for use as density reference liquids[J]. The Journal of Chemical Thermodynamics, 2008, 40(7):1095-1105.
[23] YUCEL H G, UYSAL A. Measurements of viscosity and density of n-alkane and their mixtures[C]//17th European Conference on Thermophysical Properties Collection of Manuscripts. Kazakhstan:Suleyman Demirel University, 2005:7-8.
[24] MAKRODIMITRI Z Α, HELLER A, KOLLER T M, et al. Viscosity of heavy n-alkanes and diffusion of gases therein based on molecular dynamics simulations and empirical correlations[J]. Journal of Chemical Thermodynamics, 2015, 91(1):101-107.
[25] KNPSTAD B, SKJOELSVIK P A, OEYE H A. Viscosity of pure hydrocarbons[J]. Journal of Chemical & Engineering Data, 1989, 34(1):37-43.
[26] BARRUFET M A, HALL K R, ESTRADA B A, et al. Liquid viscosity of octane and pentane + octane mixtures from 298.15 K to 373.15 K up to 25 MPa[J]. Journal of Chemical & Engineering Data, 1999, 44(6):1310-1314.
[27] SASTRI S R S, RAO K K. A new group contribution method for predicting viscosity of organic liquids[J]. Chemical Engineering Journal, 1992, 50(1):9-25.
[28] 阎建民, 乐生龙, KRISHNA R. 二元液体混合物扩散系数的理论计算[J]. 高校化学工程学报, 2007, 21(6):919-923. YAN J M, LE S L, KRISHNA R. Theoretical calculation of diffusivity in binary liquid mixtures[J]. Journal of Chemical Engineering of Chinese Universities, 2007, 21(6):919-923.
[29] COELHO L A F, OLIVEIRA J V, TAVARES F W. Dense fluid self-diffusion coefficient calculations using perturbation theory and molecular dynamics[J]. Brazilian Journal of Chemical Engineering, 1999, 16(3):319-329.
[30] ASSAEL M J, DYMOND J H, TSELEKIDOU V. Correlation of high-pressure thermal conductivity, viscosity, and diffusion coefficients for n-alkanes[J]. International Journal of Thermophysics, 1990, 11(5):863-873.
[31] BACHL F. NMR-spektroskopische untersuchungen zur dynamik einfacher kohlenwasserstoffe bis 600 MPa[D]. Regensburg:Universität Regensburg, 1988.
[32] GLASSTONE S, LAIDLER K J, EYRING H. The Theory of Rate Processes:the Kinetics of Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena[M]. New York:McGraw-Hill Inc., 1941:611.
[33] 陈六平, 韩世钧. 液体分子自扩散系数的预测[J]. 高等学校化学学报, 1992, 13(2):231-234. CHEN L P, HAN S J. Prediction of self-diffusion coefficients of molecular in liquids[J]. Chemical Journal of Chinese Universities, 1992, 13(2):231-234.
[34] PE?AR D, DOLE?EK V. Isothermal compressibilities and isobaric expansibilities of pentane, hexane, heptane and their binary and ternary mixtures from density measurements[J]. Fluid Phase Equilibria, 2003, 211(1):109-127.
[35] RASA H. Measurements and calculations of hydrocarbon mixtures liquid density by simple cubic equations of state[J]. Physics & Chemistry of Liquids, 2009, 47(2):140-147.
[36] DYMOND J H, ROBERTSON J, ISDALE J D. Transport properties of nonelectrolyte liquid mixtures(Ⅲ):Viscosity coefficients for n-octane, n-dodecane, and equimolar mixtures of n-octane + n-dodecane and n-hexane + n-dodecane from 25 to 100℃ at pressures up to the freezing pressure or 500 MPa[J]. International Journal of Thermophysics, 1981, 2(2):133-154.
[37] GRUNBERG L, NISSAN A H. Mixture law for viscosity[J]. Nature, 1949, 164(4175):799.

[1] 于旭东, 黄琴, 王林, 李茂兰, 郑洪, 曾英. KCl-PEG4000-H2O三元体系288、298、308 K相平衡测定及计算[J]. 化工学报, 2019, 70(3): 830-839.
[2] 王磊, 方桂英, 阳庆元. 金属-有机骨架材料CO2捕获性能的大规模计算筛选[J]. 化工学报, 2019, 70(3): 1135-1143.
[3] 梁馨元, 张磊, 刘琳琳, 都健. 基于分子动力学的橡胶聚合物计算机辅助设计方法[J]. 化工学报, 2019, 70(2): 525-532.
[4] 蔡惊涛, 李代禧, 刘宝林, 栾翰森, 郭柏松, 魏冬青, 王浩. 尿素(520)晶面可控结晶的分子动力学模拟[J]. 化工学报, 2019, 70(1): 128-135.
[5] 向文军, 朱朝菊, 刘丹, 周绿山. 分子动力学模拟研究两亲聚合物与疏水纳米粒子自组装核-壳结构[J]. 化工学报, 2019, 70(1): 345-354.
[6] 孙艳军, 邸高雷, 夏娟, 王晓坡, 金立文. 以离子液体为吸收剂的吸收式制冷循环热力学分析[J]. 化工学报, 2018, 69(S2): 38-44.
[7] 刘凡犁, 刘广志, 王沫然. 微纳孔隙中复杂流体液滴驱替的跨尺度混合模拟[J]. 化工学报, 2018, 69(9): 3783-3791.
[8] 季佳圆, 赵伶玲. 范德华力对Lennard-Jones体黏弹性的影响[J]. 化工学报, 2018, 69(8): 3331-3337.
[9] 陈超, 赵伶玲, 王镜凡. 甲胺铅碘钙钛矿物性及制备过程的分子模拟[J]. 化工学报, 2018, 69(6): 2380-2387.
[10] 冯飙, 邵雪峰, 朱子钦, 范利武. 赤藓糖醇微观固液相变及热传导的分子动力学研究[J]. 化工学报, 2018, 69(6): 2388-2395.
[11] 李壮楣, 王艳美, 李平, 李和平, 白红存, 郭庆杰. 宁东红石湾煤大分子模型构建及量子化学计算[J]. 化工学报, 2018, 69(5): 2208-2216.
[12] 杨建, 孟现阳, 高克慧, 吴江涛. 正戊烯的Helmholtz状态方程研究[J]. 化工学报, 2018, 69(4): 1315-1323.
[13] 付佳, 冯翔, 刘熠斌, 杨朝合. Brønsted酸强度对正碳离子转化方向影响的分子模拟[J]. 化工学报, 2018, 69(2): 725-732.
[14] 张晋玮, 成洪业, 陈立芳, 漆志文. [BMIM]HSO4离子液体腐蚀性的实验与分子模拟[J]. 化工学报, 2018, 69(2): 808-814.
[15] 杨洋, 王海生, 刘玉敏, 韩丹丹, 王静康, 龚俊波. 二元混合溶剂对盐酸硫胺溶剂化物稳定性及晶习的影响[J]. 化工学报, 2018, 69(2): 570-577.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!