化工学报 ›› 2018, Vol. 69 ›› Issue (8): 3611-3618.doi: 10.11949/j.issn.0438-1157.20180211

• 能源和环境工程 • 上一篇    下一篇

半焦-烟煤混燃特性及动力学分析

张锦萍, 王长安, 贾晓威, 王鹏乾, 车得福   

  1. 西安交通大学动力工程多相流国家重点实验室, 陕西 西安 710049
  • 收稿日期:2018-02-26 修回日期:2018-04-26 出版日期:2018-08-05 发布日期:2018-05-02
  • 通讯作者: 车得福 E-mail:dfche@mail.xjtu.edu.cn
  • 基金资助:

    国家重点研发计划项目(2017YFB0602003)。

Co-combustion characteristics and kinetic analysis of semi-coke and bituminous coal

ZHANG Jinping, WANG Chang'an, JIA Xiaowei, WANG Pengqian, CHE Defu   

  1. State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
  • Received:2018-02-26 Revised:2018-04-26 Online:2018-08-05 Published:2018-05-02
  • Supported by:

    supported by the National Key R&D Program of China (2017YFB0602003).

摘要:

掺烧烟煤是解决低挥发分热解半焦着火难、燃尽差的一种有效方法。采用热重实验研究了半焦、无烟煤与烟煤混燃特性的差别,分析了混燃过程中的交互作用和反应动力学。结果表明:陕煤半焦的燃烧过程分为可燃质的燃烧和CaCO3的分解两个阶段。半焦-烟煤混烧的主失重峰靠近燃料比接近的单燃料的DTG峰。半焦-烟煤混合燃料较无烟煤-烟煤混合燃料的综合燃烧特性更优。掺混烟煤比例越高,混燃的表观活化能越低,可燃性和综合燃烧特性越好。烟煤与半焦或无烟煤混燃过程中存在一定的交互作用,且无烟煤-烟煤的交互作用较半焦-烟煤更显著。可燃性指数和综合燃烧指数与燃料比呈负线性相关性,表观活化能E与燃料比呈正线性相关性。

关键词: 半焦, 热重分析, 混燃特性, 交互作用, 动力学分析

Abstract:

Co-combustion of bituminous coal with low volatile semi-coke is an effective method, which can improve the ignition and burnout performance of semi-coke. This paper describes the combustion characteristics differences, interaction effect, kinetic analysis of semi-coke and anthracite blended with bituminous coal by applying thermogravimetric analyzer. The results indicate that the combustion process of semi-coke is divided into two stages:combustion of combustible materials, and decomposition of calcium carbonate in the semi-coke. The main mass loss peak of the blend fuels close to DTG peak of the single fuel, which has an approximate fuel ratio with the blend. The blend of semi-coke with bituminous coal has better ignition and comprehensive combustion characteristics than blend of anthracite with bituminous coal. Addition of bituminous coal can lower the apparent activation energy, and improve the ignition and burnout performance of semi-coke or anthracite. Moreover, the apparent activation energy decreased, while the ignition and comprehensive combustion characteristics index increased with the blend ratio of bituminous coal. There exist more significant synergetic effects between bituminous coal and semi-coke than between bituminous coal and anthracite. In addition, the ignition index and comprehensive combustion index reveals negative correlation with fuel ratio, while the apparent activation energy shows positive correlation with fuel ratio.

Key words: semi-coke, thermogravimetric analysis, co-combustion characteristics, interaction effect, kinetic analysis

中图分类号: 

  • TQ53

[1] 巩志强. 低阶煤热解半焦的燃烧特性和NOx排放特性试验研究[D]. 北京:中国科学院大学, 2016. GONG Z Q. Experimental study on combustion and Nox emission characteristics of char from pyrosis of low rank coal[D]. Beijing:University of Chinese Academy of Sciences, 2016.
[2] 刘典福, 魏小林, 盛宏至, 等. 半焦燃烧特性的热重试验研究[J]. 工程热物理学报, 2007, 28(s2):229-232. LIU D F, WEI X L, SHENG H Z, et al. Thermogravimetric experimental study on combustion characteristics of semicoke[J]. Journal of Engineering Thermophysics, 2007, 28(s2):229-232.
[3] 刘建忠, 刘明强, 赵卫东, 等. 褐煤半焦燃烧特性的热重试验研究[J]. 热力发电, 2013, 42(11):86-92. LIU J Z, LIU M Q, ZHAO W D, et al. Thermogravimetric study on combustion characteristics of lignite semicoke[J]. Thermal Power Generation, 2013, 42(11):86-92.
[4] 孙庆雷, 李文, 陈皓侃, 等. DAEM和Coats-Redfern积分法研究煤半焦燃烧动力学的比较[J]. 化工学报, 2003, 54(11):1598-1602. SUN Q L, LI W, CHEN H K, et al. Comparison between DAEM and Coats-Redfern method for combustion kinetics of coal char[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(11):1598-1602.
[5] 张旻晓. 气化半焦在流化床实验台上燃烧特性研究[D]. 哈尔滨:哈尔滨工业大学, 2011. ZHANG M X. Study on the combustion characteristics of gasified char in fluidized bed experimental rig[D]. Harbin:Harbin Institute of Technology, 2011.
[6] 余斌. 循环流化床半焦燃烧特性研究[D]. 杭州:浙江大学, 2010. YU B. Study on combustion characteristics of circulating fluidized bed semi-coke[D]. Hangzhou:Zhejiang University, 2010.
[7] 么瑶. 细粉半焦预热燃烧及NOx生成特性实验研究[D]. 北京:中国科学院大学, 2016. YAO Y. Experimental study on preheated combustion characteristics and NOx emission of pulverized semi-coke[D]. Beijing:University of Chinese Academy of Sciences, 2016.
[8] 朱建国, 贺坤, 欧阳子区, 等. 0.2MW细粉半焦预热燃烧试验研究[J]. 电站系统工程, 2015, (5):9-12. ZHU J G, HE K, OUYANG Z Q, et al. 0.2 MW experimental study on preheated combustion of pulverize semi-coke[J]. Power System Engineering, 2015, (5):9-12.
[9] 刘家利, 郭孟狮, 李炎. 135MW机组锅炉掺烧半焦试验及经济性分析[J]. 洁净煤技术, 2017, 23(2):86-91. LIU J L, GUO M S, LI Y. Economic analysis for a 135 MW pulverized coal fired boiler blending with semi-coke[J]. Clean Coal Technology, 2017, 23(2):86-91.
[10] 杨忠灿, 王志超, 李炎, 等. 电站煤粉锅炉掺烧兰炭试验研究[J]. 洁净煤技术, 2017, 23(3):80-85. YANG Z C, WANG Z C, LI Y, et al. Experimental research on pulverized coal power station blending with semi-coke[J]. Clean Coal Technology, 2017, 23(3):80-85.
[11] 张保生, 刘建忠, 周俊虎, 等. 一种基于多重扫描速率法求解煤燃烧反应参数的新方法[J]. 中国电机工程学报, 2009, 29(32):45-50. ZHANG B S, LIU J Z, ZHOU J H, et al. A new method based on multi-heating rate methods for coal combustion parameters[J]. Proceedings of the CSEE, 2009, 29(32):45-50.
[12] 马国伟, 张晓明, 刘建华, 等. 混煤燃烧过程中的交互作用与动力学特性研究[J]. 电力科学与工程, 2013, 29(2):56-62. MA G W, ZHANG X M, LIU J H, et al. Study on interaction and kinetic characteristics during combustion of blended coals[J]. Electric Power Science and Engineering, 2013, 29(2):56-62.
[13] 李梅, 张洪. 石灰石分解特性的热重法研究[J]. 煤炭转化, 2006, 29(4):25-28. LI M, ZHANG H. Thermal analysis on the decomposing characteristics of limestone[J]. Coal Conversion, 2006, 29(4):25-28.
[14] 陈海, 张世红, 杨海平, 等.大粒径石灰石热分解动力学研究[J]. 无机盐工业, 2013, 45(9):11-14. CHEN H, ZHANG S H, YANG H P, et al. Study on thermal decomposition kinetics of limestone with large particle size[J]. Inorganic Chemicals Industry, 2013, 45(9):11-14.
[15] 卢尚青, 吴素芳.碳酸钙热分解进展[J]. 化工学报, 2015, 66(8):2895-2902. LU S Q, WU S F. Advances in calcium carbonate thermal decomposition[J]. CIESC Journal, 2015, 66(8):2895-2902.
[16] WANG G, ZHANG J, SHAO J, et al. Thermal behavior and kinetic analysis of co-combustion of waste biomass/low rank coal blends[J]. Energy Conversion & Management, 2016, 124:414-426.
[17] ZHANG J, ZHANG C, QIU Y, et al. Evaluation of moisture readsorption and combustion characteristics of a lignite thermally upgraded with the addition of asphalt[J]. Energy & Fuels, 2014, 28(12):7680-7688.
[18] WANG C A, ZHANG X, LIU Y, et al. Pyrolysis and combustion characteristics of coals in oxyfuel combustion[J]. Applied Energy, 2012, 97(3):264-273.
[19] KÖK M V. Temperature-controlled combustion and kinetics of different rank coal samples[J]. Journal of Thermal Analysis & Calorimetry, 2005, 79(1):175-180.
[20] LI Q, ZHAO C, CHEN X, et al. Comparison of pulverized coal combustion in air and in O2/CO2 mixtures by thermo-gravimetric analysis[J]. Journal of Analytical & Applied Pyrolysis, 2009, 85(1):521-528.
[21] MUTHURAMAN M, NAMIOKA T, YOSHIKAWA K. Characteristics of co-combustion and kinetic study on hydrothermally treated municipal solid waste with different rank coals:a thermogravimetric analysis[J]. Applied Energy, 2010, 87(1):141-148.
[22] 王擎, 王海刚, 孙佰仲, 等. 油页岩及其半焦混烧特性的热重试验研究和动力学分析[J]. 化工学报, 2007, 58(11):2882-2888. WANG Q, WANG H G, SUN B Z, et al. Thermo-gravimetric study and kinetic analysis of blended combustion characteristics of oil shale and semi-coke[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(11):2882-2888.
[23] HUANG X, JIANG X, HAN X, et al. Combustion characteristics of fine-and micro-pulverized coal in the mixture of O2/CO2[J]. Energy & Fuels, 2008, 22(6):3756-3762.
[24] JIAN W, ZHANG S, XI G, et al. Thermal behaviors and kinetics of Pingshuo coal/biomass blends during copyrolysis and cocombustion[J]. Energy & Fuels, 2012, 26(12):7120-7126.
[25] 蒋绪, 吕颖利, 邢相栋, 等. 烟煤与无烟煤混合煤粉燃烧过程的动力学研究[J]. 洁净煤技术, 2012, 18(3):78-83. JIANG X, LÜ Y L, XING X D, et al. Combustion kinetics of mixed coal blending bituminous coal with anthracite[J]. Clean Coal Technology, 2012, 18(3):78-83.
[26] GAI C, DONG Y, ZHANG T. The kinetic analysis of the pyrolysis of agricultural residue under non-isothermal conditions[J]. Bioresource Technology, 2013, 127(1):298-305.
[27] CHEN C, LU Z, MA X, et al. Oxy-fuel combustion characteristics and kinetics of microalgae Chlorella vulgaris by thermogravimetric analysis[J]. Bioresource Technology, 2013, 144(4):563-571.
[28] MA Y, NIU R, WANG X, et al. Co-pyrolysis behaviour and kinetic of two typical solid wastes in China and characterisation of activated carbon prepared from pyrolytic char[J]. Waste Management & Research the Journal of the International Solid Wastes & Public Cleansing Association Iswa, 2014, 32(11):1123-1133.
[29] VYAZOVKIN S, BURNHAM A K, CRIADO J M, et al. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica Acta, 2016, 520(1):1-19.
[30] JANKOVI? B, MENTUS S, JELI? D. A kinetic study of non-isothermal decomposition process of anhydrous nickel nitrate under air atmosphere[J]. Physica B Condensed Matter, 2009, 404(16):2263-2269.
[31] 刘仁生, 赵兵, 房连增, 等. 高炉喷吹煤粉的热解过程及其动力学规律[J]. 洁净煤技术, 2008, 14(6):51-54. LIU R S, ZHAO B, FANG L Z, et al. The pyrolysis characteristics of pulverized coal and its dynamics law[J]. Clean Coal Technology, 2008, 14(6):51-54.

[1] 周国江, 刘竹涛, 战金辉, 赖登国, 刘晓星. 温度梯度与产物流动对先锋褐煤热解产物分布的影响[J]. 化工学报, 2018, 69(6): 2672-2680.
[2] 袁洪友, 武书彬, 阴秀丽, 黄艳琴, 刘华财, 王贵金, 詹昊, 吴创之. 草浆黑液热解和燃烧碱回收过程硅元素的分布[J]. 化工学报, 2018, 69(5): 2191-2198.
[3] 徐鲁帅, 郝木明, 李勇凡, 杨文静, 王赟磊, 曹恒超. 液膜密封非定常工况下的瞬态特性[J]. 化工学报, 2018, 69(4): 1547-1557.
[4] 翟中媛, 金晶, 王永贞, 侯封校, 杨浩然, 李焕龙. 准东煤灰中的钙镁黄长石生成机理研究[J]. 化工学报, 2018, 69(12): 5266-5275.
[5] 郭源, 邵应娟, 钟文琪, 李开喜. 煤沥青球的氧化不熔化过程特性[J]. 化工学报, 2018, 69(1): 499-506.
[6] 唐一菁, 王肖杭, 王东科, 何石鱼, 黄群星, 池涌, 严建华. 淀粉和聚氯乙烯交互作用对热解焦油特性的影响[J]. 化工学报, 2017, 68(5): 2049-2056.
[7] 江国栋, 魏利平, 滕海鹏, 郝惠娣. 基于热重法的准东煤等转化率热解动力学模型[J]. 化工学报, 2017, 68(4): 1415-1422.
[8] 段绍君, 孙玉柱, 宋兴福, 于建国. 响应曲面法优化碳酸锂反应结晶工艺[J]. 化工学报, 2017, 68(11): 4169-4177.
[9] 黄逸群, 张缦, 单露, 杨海瑞, 岳光溪. 干馏条件对油页岩半焦孔隙结构的影响[J]. 化工学报, 2017, 68(10): 3870-3876.
[10] 王芳, 曾玺, 孙延林, 张建岭, 唐诗白, 余剑, 王永刚, 许光文. 两段流化床中半焦催化脱除焦油特性[J]. 化工学报, 2017, 68(10): 3762-3769.
[11] 冯冬冬, 赵义军, 刘鹏, 张宇, 张海楠, 孙绍增. 挥发分-半焦交互反应对生物质热解半焦特性的影响[J]. 化工学报, 2016, 67(11): 4787-4794.
[12] 孟迪, 陈红, 薛罡. 典型PPCPs与纳米铜颗粒理化性质的交互影响[J]. 化工学报, 2016, 67(10): 4455-4460.
[13] 王芳, 曾玺, 王永刚, 余剑, 岳君容, 张建岭, 许光文. 微型流化床与热重测定煤焦非等温气化反应动力学对比[J]. 化工学报, 2015, 66(5): 1716-1722.
[14] 韩晓红, 管文洁, 高赞军, 崔晓龙, 徐象国, 陈光明. 汽液相平衡计算混合法则中协体积项b的改进[J]. 化工学报, 2015, 66(2): 489-496.
[15] 白翔, 马凤云, 刘景梅, 钟梅. 新疆托里油砂分段热解机理[J]. 化工学报, 2015, 66(11): 4626-4633.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曹兴,杜文静,程林. 连续螺旋折流板换热器流动与传热性能及熵产分析[J]. 化工学报, 2012, 63(8): 2375 -2382 .
[2] 张兰河,李军,郭静波,贾艳萍,张海丰. EPS对活性污泥絮凝沉降性能与表面性质的影响[J]. 化工学报, 2012, 63(6): 1865 -1871 .
[3] 陈卫东, 孙彦. 吸附密度对蛋白质在离子交换吸附剂中孔扩散系数的影响 [J]. 化工学报, 2003, 54(2): 215 -220 .
[4] 周新建, 陈听宽. 引射喷嘴流量系数的计算方法 [J]. 化工学报, 2002, 53(10): 1092 -1094 .
[5] 孙庆雷, 李文, 李保庆. 神木煤热解的挥发分收率与岩相组成的关系 [J]. 化工学报, 2003, 54(2): 269 -272 .
[6] 刘唐, 骞伟中, 汪展文, 魏飞, 金涌, 李俊诚, 李永丹. 流化床中甲烷催化裂解制备碳纳米管和氢气 [J]. 化工学报, 2003, 54(11): 1614 -1618 .
[7] 赵宗彬, 李文, 李保庆. 矿物质对煤焦燃烧过程中NO释放规律的影响 [J]. 化工学报, 2003, 54(1): 100 -106 .
[8] 李瑞, 许春建, 曾爱武, 周明. 精馏塔板上双液层三维模型的流体力学计算 [J]. 化工学报, 2003, 54(2): 159 -163 .
[9] 詹水清1,周孑民1,吴烨2,李远1,梁艳南1,杨莺1. 高温熔盐热物性的动态测定与误差修正方法[J]. 化工学报, 2012, 63(8): 2341 -2347 .
[10] 韩佳宾, 王静康. 咖啡因在水和乙醇中的溶解度及其关联 [J]. 化工学报, 2004, 55(1): 125 -128 .