化工学报

• 综述与专论 • 上一篇    下一篇

磁共振成像应用于多相流体动力学研究进展

朱礼涛, 罗正鸿   

  1. 上海交通大学化学化工学院, 金属基复合材料国家重点实验室, 上海 200240
  • 收稿日期:2018-02-11 修回日期:2018-04-24 出版日期:2018-09-05 发布日期:2018-04-25
  • 通讯作者: 罗正鸿 E-mail:luozh@sjtu.edu.cn
  • 基金资助:

    国家科技部项目(2017YFB0602401);国家自然科学基金项目(21776173,21625603)。

Application of magnetic resonance imaging to multiphase fluid hydrodynamics

ZHU Litao, LUO Zhenghong   

  1. State Key Laboratory of Metal Matrix Composites, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2018-02-11 Revised:2018-04-24 Online:2018-09-05 Published:2018-04-25
  • Supported by:

    supported by the National Ministry of Science and Technology of China (2017YFB0602401) and the National Natural Science Foundation of China (21776173, 21625603).

摘要:

多相流反应器广泛应用于化工、冶金、能源及医药等过程工业,其内部具有非稳态、非线性、非平衡的自然属性,因而对多相流检测技术提出了挑战。准确检测并理解多相流体力学特性、进而揭示并掌握多相流反应器设计及放大规律,一直是当今过程工程领域的前沿课题之一。磁共振成像(MRI)作为一种非侵入式、多维瞬态全流场先进检测手段,可获得准确详尽的多维流场信息,包括颗粒浓度与速度(脉动)场、流型识别、气泡尾涡、颗粒聚团等多尺度流场参数及介尺度流动结构。此外,MRI在数值模型验证与改进方面也具有良好的应用前景。概述了MRI技术原理,重点论述了MRI近年来在气固及气液反应器中的研究现状,展望了MRI在多相流反应器中有待拓展的方向。

关键词: 磁共振成像, 多相反应器, 多相流, 流体动力学, 介尺度

Abstract:

Multiphase reactors are most widely encountered in chemical, metallurgical, energy and pharmaceutical industries. Because multiphase flow in reactors is generally unstable, nonlinear and non-equilibrium in nature, many challenges are exerted to multiphase flow detection technology. It has always been one of the frontier studies in process engineering to accurately measure and comprehend multiphase hydrodynamics, as well as to discover and master rules for design and scale-up of multiphase reactors. Magnetic resonance image (MRI) technology, an advanced non-invasive detection method, can obtain accurate and detail information of multi-dimensional transient fields, such as transient solid concentrations, velocity (fluctuating) fields, flow pattern recognition, bubble vortex structure, particle clustering, and meso-scale heterogeneous structures. Additionally, MRI could have good prospective applications for validation and improvement of numerical models. This review discussed MRI principle, analyzed current status of MRI application for gas-solid and gas-liquid flow hydrodynamics, and prospected promising future directions.

Key words: magnetic resonance image, multiphase reactor, multiphase flow, hydrodynamics, mesoscale

中图分类号: 

  • TQ021.1

[1] GLADDEN L F, ALEXANDER P. Applications of nuclear magnetic resonance imaging in process engineering[J]. Measurement Science and Technology, 1996, 7(3):423-435.
[2] FUKUSHIMA E. Nuclear magnetic resonance as a tool to study flow[J]. Annual Review of Fluid Mechanics, 1999, 31(1):95-123.
[3] GLADDEN L F. Magnetic resonance:ongoing and future role in chemical engineering research[J]. AIChE Journal, 2003, 49(1):2-9.
[4] MÜLLER C R, HOLLAND D J, SEDERMAN A J, et al. Magnetic resonance imaging of fluidized beds[J]. Powder Technology, 2008, 183(1):53-62.
[5] HOLLAND D J, MÜLLER C R, SEDERMAN A J, et al. Magnetic resonance imaging of fluidized beds:recent advances[J]. Theoretical Foundations of Chemical Engineering, 2008, 42(5):469-478.
[6] EHRICHS E E, JAEGER H M, KARCZMAR G S, et al. Granular convection observed by magnetic resonance imaging[J]. Science, 1995, 267(5204):1632-1634.
[7] SAVELSBERG R, DEMCO D E, BLÜMICH B, et al. Particle motion in gas-fluidized granular systems by pulsed-field gradient nuclear magnetic resonance[J]. Physical Review E, 2002, 65(2):020301.
[8] HUAN C, YANG X, CANDELA D, et al. NMR experiments on a three-dimensional vibrofluidized granular medium[J]. Physical Review E, 2004, 69(4):041302.
[9] FENNELL P S, DAVIDSON J F, DENNIS J S, et al. A study of the mixing of solids in gas-fluidized beds, using ultra-fast MRI[J]. Chemical Engineering Science, 2005, 60(7):2085-2088.
[10] MÜLLER C R, DAVIDSON J F, DENNIS J S, et al. Real-time measurement of bubbling phenomena in a three-dimensional gas-fluidized bed using ultrafast magnetic resonance imaging[J]. Physical Review Letters, 2006, 96(15):154504.
[11] MÜLLER C R, DAVIDSON J F, DENNIS J S, et al. Rise velocities of bubbles and slugs in gas-fluidised beds:ultra-fast magnetic resonance imaging[J]. Chemical Engineering Science, 2007, 62(1):82-93.
[12] HOLLAND D J, MÜLLER C R, DENNIS J S, et al. Magnetic resonance studies of fluidization regimes[J]. Industrial & Engineering Chemistry Research, 2010, 49(12):5891-5899.
[13] PORE M, CHANDRASEKERA T C, HOLLAND D J, et al. Magnetic resonance studies of jets in a gas-solid fluidised bed[J]. Particuology, 2012, 10(2):161-169.
[14] FABICH H T, SEDERMAN A J, HOLLAND D J, et al. Study of bubble dynamics in gas-solid fluidized beds using ultrashort echo time (UTE) magnetic resonance imaging (MRI)[J]. Chemical Engineering Science, 2017, 172:476-486.
[15] BOYCE C M, RICE N P, DAVIDSON J F, et al. Magnetic resonance imaging of gas dynamics in the freeboard of fixed beds and bubbling fluidized beds[J]. Chemical Engineering Science, 2016, 147:13-20.
[16] BOYCE C M, PENN A, PRUESSMANN K P, et al. Magnetic resonance imaging of gas-solid fluidization with liquid bridging[J]. AIChE Journal, 2018, 64(8):2958-2971.
[17] KÖHL M H, LU G, THIRD J R, et al. Magnetic resonance imaging (MRI) study of jet formation in packed beds[J]. Chemical Engineering Science, 2013, 97(1):406-412.
[18] KÖHL M H, LU G, THIRD J R, et al. Magnetic resonance imaging (MRI) of jet height hysteresis in packed beds[J]. Chemical Engineering Science, 2014, 109(1):276-283.
[19] 赵喜平. 磁共振成像[M]. 北京:科学出版社, 2004. ZHAO X P. Magnetic Resonance Imaging[M]. Beijing:Science Press, 2004.
[20] HAASE A, FRAHM J, MATTHAEI D, et al. FLASH imaging. Rapid NMR imaging using low flip-angle pulses[J]. Journal of Magnetic Resonance, 1986, 67(2):258-266.
[21] LJUNGGREN S. A simple graphical representation of Fourier-based imaging methods[J]. Journal of Magnetic Resonance, 1983, 54(2):338-343.
[22] MAEDA A, SANO K, YOKOYAMA T. Reconstruction by weighted correlation for MRI with time-varying gradients[J]. IEEE Transactions on Medical Imaging, 1988, 7(1):26-31.
[23] NAKAGAWA M, ALTOBELLI S A, CAPRIHAN A, et al. Non-invasive measurements of granular flows by magnetic resonance imaging[J]. Experiments in fluids, 1993, 16(1):54-60.
[24] GELDART D. Types of gas fluidization[J]. Powder Technology, 1973, 7(5):285-292.
[25] GAO J, XU C, LIN S, et al. Advanced model for turbulent gas-solid flow and reaction in FCC riser reactors[J]. AIChE Journal, 1999, 45(5):1095-1113.
[26] WEI F, RAN X, ZHOU R, et al. A dispersion model for fluid catalytic cracking riser and downer reactors[J]. Industrial & Engineering Chemistry Research, 1997, 36(12):5049-5053.
[27] LI J, FAN Y P, LU C X, et al. Numerical simulation of influence of feed injection on hydrodynamic behavior and catalytic cracking reactions in a FCC riser under reactive conditions[J]. Industrial & Engineering Chemistry Research, 2013, 52(32):11084-11098.
[28] CHEN G Q, LUO Z H. New insights into intraparticle transfer, particle kinetics, and gas-solid two-phase flow in polydisperse fluid catalytic cracking riser reactors under reaction conditions using multi-scale modeling[J]. Chemical Engineering Science, 2014, 109(16):38-52.
[29] 梁晓飞, 姚亚, 罗正鸿. 流化催化裂化提升管反应器的CFD-PBM耦合模型:矩方法适用性比较[J]. 化工学报, 2016, 67(8):3224-3233. LIANG X F, YAO Y, LUO Z H. Comparison of suitability of MOMs in solving CFD-PBM coupling model for FCC riser reactors[J]. CIESC Journal, 2016, 67(8):3224-3233.
[30] ZHAO Y, LI H, YE M, et al. 3D numerical simulation of a large scale MTO fluidized bed reactor[J]. Industrial & Engineering Chemistry Research, 2013, 52(33):11354-11364.
[31] ZHU L T, XIE L, XIAO J, et al. Filtered model for the cold-model gas-solid flow in a large-scale MTO fluidized bed reactor[J]. Chemical Engineering Science, 2016, 143:369-383.
[32] ZHU L T, YE M, LUO Z H. Application of filtered model for reacting gas-solid flows and optimization in a large-scale methanol-to-olefin fluidized-bed reactor[J]. Industrial & Engineering Chemistry Research, 2016, 55(46):11887-11899.
[33] ZHUANG Y Q, CHEN X M, LUO Z H, et al. CFD-DEM modeling of gas-solid flow and catalytic MTO reaction in a fluidized bed reactor[J]. Computers & Chemical Engineering, 2014, 60:1-16.
[34] SEDERMAN A J, GLADDEN L F. Magnetic resonance imaging as a quantitative probe of gas-liquid distribution and wetting efficiency in trickle-bed reactors[J]. Chemical Engineering Science, 2001, 56(8):2615-2628.
[35] NGUYEN N L, VAN BUREN V, VON GARNIER A, et al. Application of magnetic resonance imaging (MRI) for investigation of fluid dynamics in trickle bed reactors and of droplet separation kinetics in packed beds[J]. Chemical Engineering Science, 2005, 60(22):6289-6297.
[36] GLADDEN L F, ANADON L D, DUNCKLEY C P. Insights into gas-liquid-solid reactors obtained by magnetic resonance imaging[J]. Chemical Engineering Science, 2007, 62(24):6969-6977.
[37] LYSOVA A A, KOPTYUG I V, KULIKOV A V. Nuclear magnetic resonance imaging of an operating gas-liquid-solid catalytic fixed bed reactor[J]. Chemical Engineering Journal, 2007, 130(2):101-109.
[38] SANKEY M H, HOLLAND D J, SEDERMAN A J, et al. Magnetic resonance velocity imaging of liquid and gas two-phase flow in packed beds[J]. Journal of Magnetic Resonance, 2009, 196(2):142-148.
[39] TAYLER A B, HOLLAND D J, SEDERMAN A J, et al. Exploring the origins of turbulence in multiphase flow using compressed sensing MRI[J]. Physical Review Letters, 2012, 108(26):264505.
[40] HOLLAND D J, BLAKE A, TAYLER A B, et al. A Bayesian approach to characterising multi-phase flows using magnetic resonance:application to bubble flows[J]. Journal of Magnetic Resonance, 2011, 209(1):83-87.
[41] TAYLER A B, HOLLAND D J, SEDERMAN A J, et al. Applications of ultra-fast MRI to high voidage bubbly flow:measurement of bubble size distributions, interfacial area and hydrodynamics[J]. Chemical Engineering Science, 2012, 71(71):468-483.
[42] HOLLAND D J, BLAKE A, TAYLER A B, et al. Bubble size measurement using Bayesian magnetic resonance[J]. Chemical Engineering Science, 2012, 84(52):735-745.
[43] MÜLLER C R, HOLLAND D J, SEDERMAN A J, et al. Granular temperature:comparison of magnetic resonance measurements with discrete element model simulations[J]. Powder Technology, 2008, 184(2):241-253.
[44] MÜLLER C R, SCOTT S A, HOLLAND D J, et al. Validation of a discrete element model using magnetic resonance measurements[J]. Particuology, 2009, 7(4):297-306.
[45] MÜLLER C R, HOLLAND D J, THIRD J R, et al. Multi-scale magnetic resonance measurements and validation of discrete element model simulations[J]. Particuology, 2011, 9(4):330-341.
[46] BOYCE C M, OZEL A, RICE N P, et al. Effective particle diameters for simulating fluidization of non-spherical particles:CFD-DEM models vs. MRI measurements[J]. AIChE Journal, 2017, 63(7):2555-2568.
[47] 杨宁, 李静海. 化学工程中的介尺度科学与虚拟过程工程:分析与展望[J]. 化工学报, 2014, 65(7):2403-2409. YANG N, LI J H. Mesoscience in chemical engineering and virtual process engineering:analysis and prospect[J]. CIESC Journal, 2014, 65(7):2403-2409.
[48] TSUJI Y, KAWAGUCHI T, TANAKA T. Discrete particle simulation of two-dimensional fluidized bed[J]. Powder Technology, 1993, 77(1):79-87.
[49] FENG Y Q, XU B H, ZHANG S J, et al. Discrete particle simulation of gas fluidization of particle mixtures[J]. AIChE Journal, 2004, 50(8):1713-1728.
[50] ANDERSON J D, WENDT J. Computational Fluid Dynamics[M]. New York:McGraw-Hill, 1995.
[51] XIE L, LUO Z H. Multiscale computational fluid dynamics-population balance model coupled system of atom transfer radical suspension polymerization in stirred tank reactors[J]. Industrial & Engineering Chemistry Research, 2017, 56(16):4690-4702.
[52] PAN H, LIU Q, LUO Z H. Modeling and simulation of particle size distribution behavior in gas-liquid-solid polyethylene fluidized bed reactors[J]. Powder Technology, 2018, 328:95-107.
[53] ZHU L T, PAN H, SU Y H, LUO Z H. Effect of particle polydispersity on flow and reaction behaviors of methanol-to-olefins fluidized bed reactors[J]. Industrial & Engineering Chemistry Research, 2017, 56(4):1090-1102.
[54] WESTERWEEL J. Fundamentals of digital particle image velocimetry[J]. Measurement Science and Technology, 1997, 8(12):1379.
[55] DIJKHUIZEN W V, BOKKERS G A, DEEN N G. Extension of PIV for measuring granular temperature field in dense fluidized beds[J]. AIChE Journal, 2007, 53(1):108-118.
[56] CHEN R C, FAN L S. Particle image velocimetry for characterizing the flow structure in three-dimensional gas-liquid-solid fluidized beds[J]. Chemical Engineering Science, 1992, 47(13):3615-3622.
[57] CHEN R C, REESE J, FAN L S. Flow structure in a three-dimensional bubble column and three-phase fluidized bed[J]. AIChE Journal, 1994, 40(7):1093-1104.
[58] 罗琴, 赵银峰, 叶茂, 等. 电容层析成像在气固流化床测量中的应用[J].化工学报, 2014, 65(7):2504-2512. LUO Q, ZHAO Y F, YE M, et al. In the application of electrical capacitance tomography in the measurement of gas-solid fluidized bed[J]. CIESC Journal, 2014, 65(7):2504-2512.
[59] 罗琴, 张玉黎, 赵银峰, 等. ECT测量A类颗粒初始流化特性[J]. 中南大学学报(自然科学版), 2016, 47(11):3916-3921. LUO Q, ZHANG Y L, ZHAO Y F, et al. Measuring minimum fluidization velocity of Geldart particles by use of electrical capacitance tomography[J]. Journal of Central South University (Natural Science Edition), 2016, 47(11):3916-3921.
[60] WARSITO W, FAN L S. ECT imaging of three-phase fluidized bed based on three-phase capacitance model[J]. Chemical Engineering Science, 2003, 58(3):823-832.
[61] DU B, WARSITO W, FAN L S. ECT studies of the choking phenomenon in a gas-solid circulating fluidized bed[J]. AIChE Journal, 2004, 50(7):1386-1406.
[62] MENG F, ZHANG N, WANG W. Virtual experimentation of beam hardening effect in X-ray CT measurement of multiphase flow[J]. Powder Technology, 2009, 194(1):153-157.
[63] HEINDEL T J, GRAY J N, JENSEN T C. An X-ray system for visualizing fluid flows[J]. Flow Measurement and Instrumentation, 2008, 19(2):67-78.
[64] LIN J S, CHEN M M, CHAO B T. A novel radioactive particle tracking facility for measurement of solids motion in gas fluidized beds[J]. AIChE Journal, 1985, 31(3):465-473.
[65] LUO H P, KEMOUN A, AL-DAHHAN M H, et al. Analysis of photobioreactors for culturing high-value microalgae and cyanobacteria via an advanced diagnostic technique:CARPT[J]. Chemical Engineering Science, 2003, 58(12):2519-2527.
[66] HOLLAND D J, MARASHDEH Q, MULLER C R, et al. Comparison of ECVT and MR measurements of voidage in a gas-fluidized bed[J]. Industrial & Engineering Chemistry Research, 2008, 48(1):172-181.
[67] CHANDRASEKERA T C, WANG A, HOLLAND D J, et al. A comparison of magnetic resonance imaging and electrical capacitance tomography:an air jet through a bed of particles[J]. Powder Technology, 2012, 227(9):86-95.
[68] 田海军, 周云龙, 赵晓明. 气固两相流固相浓度与流速的测量及可视化[J]. 化工进展, 2017, 36(12):4350-4355. TIAN H J, ZHOU Y L, ZHAO X M. Measurement and visualization of concentration and velocity of solid phase in the gas-solid two-phase flow[J]. Chemical Industry and Engineering Progress, 2017, 36(12):4350-4355.
[69] KITAJIMA H D, SUNDARESWARAN K S, TEISSEYRE T Z, et al. Comparison of particle image velocimetry and phase contrast MRI in a patient-specific extracardiac total cavopulmonary connection[J]. Journal of Biomechanical Engineering, 2008, 130(4):041004.
[70] VAN OOIJ P, GUÉDON A, POELMA C, et al. Complex flow patterns in a real-size intracranial aneurysm phantom:phase contrast MRI compared with particle image velocimetry and computational fluid dynamics[J]. NMR in Biomedicine, 2012, 25(1):14-26.
[71] 孟凡勇, 李静海. 便携式CT扫描设备、便携式CT系统和CT检测方法:104007131A[P]. 2014-8-27. MENG F Y, LI J H. Portable CT scanner, system and detection method:104007131A[P]. 2014-8-27.
[72] DING J, GIDASPOW D. A bubbling fluidization model using kinetic theory of granular flow[J]. AIChE Journal, 1990, 36(4):523-538.

[1] 周鑫, 邓乐东, 王宏, 朱恂, 陈蓉, 廖强, 丁玉栋. 圆柱壁面上液滴凝固相变对其运动行为的影响[J]. 化工学报, 2019, 70(3): 883-891.
[2] 陈卫, 任瑛. 流态化与物质相变的相似性[J]. 化工学报, 2019, 70(1): 1-9.
[3] 刘英杰, 祝京旭. 气泡驱动液固流化床内二元颗粒的流化行为[J]. 化工学报, 2019, 70(1): 91-98.
[4] 王鑫, 杨斌鑫. 耦合格子Boltzmann的聚合物结晶相场方法[J]. 化工学报, 2018, 69(S2): 193-199.
[5] 杜东兴, 郑利晨, 张旭, 孙国龙, 李莺歌, 巢昆. 多孔介质内超临界CO2流体及泡沫驱油特性的比较实验研究[J]. 化工学报, 2018, 69(S1): 58-63.
[6] 杨树俊, 魏玉聪, Woo Meng Wai, 吴铎, 陈晓东, 肖杰. 入口旋流对均一粒径液滴喷雾干燥塔影响的数值模拟[J]. 化工学报, 2018, 69(9): 3814-3824.
[7] 田华, 张志颖, 刘春艳. AgO有序阵列结构电极材料的制备与表征[J]. 化工学报, 2018, 69(8): 3711-3716.
[8] 贺登辉, 陈森林, 白博峰. 基于Chisholm模型的V锥流量计气液分层流测量新模型[J]. 化工学报, 2018, 69(8): 3428-3435.
[9] 初彤, 杨悦锁, 路莹, 武宇辉, 陈煜, 杜新强. 寒区石油污染场地浅层地下水原位增温强化空气扰动修复[J]. 化工学报, 2018, 69(8): 3701-3710.
[10] 孙子文, 陈岱琳, 钟文琪, Aibing Yu. 快速流化床颗粒团絮特征的MP-PIC数值模拟[J]. 化工学报, 2018, 69(8): 3443-3451.
[11] 姜鹏, 王琨, 谯敏, 李俊峰, 薛云翔, 黄卫星. 气液两相并流下行通过堆叠筛板填料的压降特性[J]. 化工学报, 2018, 69(8): 3373-3382.
[12] 吴云, 杜小磊, 宋凯, 刘宏宇, 王捷, 王二坡. 生物接触氧化池悬浮填料流动特性数值模拟分析[J]. 化工学报, 2018, 69(7): 3242-3248.
[13] 张杰, 李涛. 甲烷化梅花状催化剂CFD计算及改进[J]. 化工学报, 2018, 69(7): 2985-2992.
[14] 邱小平, 王利民, 杨宁. 耦合EMMS曳力与简化双流体模型的气固流动模拟[J]. 化工学报, 2018, 69(5): 1867-1872.
[15] 刘岑凡, 张楠, 王维. 鼓泡床中基于气泡结构的多相反应模型[J]. 化工学报, 2018, 69(5): 2057-2062.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曹兴,杜文静,程林. 连续螺旋折流板换热器流动与传热性能及熵产分析[J]. 化工学报, 2012, 63(8): 2375 -2382 .
[2] 张兰河,李军,郭静波,贾艳萍,张海丰. EPS对活性污泥絮凝沉降性能与表面性质的影响[J]. 化工学报, 2012, 63(6): 1865 -1871 .
[3] 陈卫东, 孙彦. 吸附密度对蛋白质在离子交换吸附剂中孔扩散系数的影响 [J]. 化工学报, 2003, 54(2): 215 -220 .
[4] 周新建, 陈听宽. 引射喷嘴流量系数的计算方法 [J]. 化工学报, 2002, 53(10): 1092 -1094 .
[5] 孙庆雷, 李文, 李保庆. 神木煤热解的挥发分收率与岩相组成的关系 [J]. 化工学报, 2003, 54(2): 269 -272 .
[6] 刘唐, 骞伟中, 汪展文, 魏飞, 金涌, 李俊诚, 李永丹. 流化床中甲烷催化裂解制备碳纳米管和氢气 [J]. 化工学报, 2003, 54(11): 1614 -1618 .
[7] 赵宗彬, 李文, 李保庆. 矿物质对煤焦燃烧过程中NO释放规律的影响 [J]. 化工学报, 2003, 54(1): 100 -106 .
[8] 李瑞, 许春建, 曾爱武, 周明. 精馏塔板上双液层三维模型的流体力学计算 [J]. 化工学报, 2003, 54(2): 159 -163 .
[9] 詹水清1,周孑民1,吴烨2,李远1,梁艳南1,杨莺1. 高温熔盐热物性的动态测定与误差修正方法[J]. 化工学报, 2012, 63(8): 2341 -2347 .
[10] 韩佳宾, 王静康. 咖啡因在水和乙醇中的溶解度及其关联 [J]. 化工学报, 2004, 55(1): 125 -128 .