化工学报 ›› 2018, Vol. 69 ›› Issue (8): 3460-3468.doi: 10.11949/j.issn.0438-1157.20180134

• 分离工程 • 上一篇    下一篇

对二甲苯降膜结晶动力学

王瑞1, 许妍霞1, 宋兴福1, 徐志刚2, 于建国1   

  1. 1 华东理工大学国家盐湖综合利用工程技术研究中心, 上海 200237;
    2 常州瑞华化工工程技术有限公司, 江苏 常州 213000
  • 收稿日期:2018-01-30 修回日期:2018-05-07 出版日期:2018-08-05 发布日期:2018-06-01
  • 通讯作者: 宋兴福 E-mail:xfsong@ecust.edu.cn

Falling film crystallization kinetics of paraxylene

WANG Rui1, XU Yanxia1, SONG Xingfu1, XU Zhigang2, YU Jianguo1   

  1. 1 National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, Shanghai 200237, China;
    2 Changzhou Ruihua Chemical Eng. & Tech. Co., Ltd., Changzhou 213000, Jiangsu, China
  • Received:2018-01-30 Revised:2018-05-07 Online:2018-08-05 Published:2018-06-01

摘要:

降膜结晶是工业生产对二甲苯的重要方法。以多孔介质分形理论为基础开展对二甲苯降膜结晶动力学的研究。通过动力学模型优化实验条件,结晶条件为进料速度为60 ml·min-1、结晶温度-15℃、原料预冷温度25℃,发汗条件为升温速率1℃·min-1、发汗终温5℃。在此条件下测定降膜结晶过程中对二甲苯结晶量以及液相夹带量,建立了晶体生长速率方程和液相夹带速率方程,相关系数分别为0.967和0.977,模型可靠。结果表明随着过饱和度的增加,液相夹带速率增长更快,晶层中夹带液相体积分数越大,晶层孔隙率越大。晶体生长速率方程和液相夹带速率方程的建立对工业降膜结晶生产对二甲苯过程中,通过调节液膜过饱和度控制晶层生长具有重要参考意义。

关键词: 对二甲苯, 结晶, 动力学, 优化, 过饱和度, 孔隙率

Abstract:

Falling film crystallization is an important production method of paraxylene in industry. The falling film crystallization kinetics of paraxylene was studied based on the fractal and porous media theory. The experimental conditions were optimized by kinetic modeling. The crystallization conditions were feeding speed of 60 ml·min-1, crystallization temperature of -15℃ and raw material precooling temperature of 25℃, and sweating conditions were heating rate 1℃·min-1, and sweating end temperature of 5℃. Under the optimized experimental conditions, the crystal growth rate equation and the liquid entrapment rate equation were built by measuring the amount of paraxylene crystallization and liquid entrapment, and the correlation coefficients were 0.967 and 0.977. The results show that the liquid entrapment rate increases faster, and the volume fraction of the liquid entrapment in the crystal layer increases with the augment of supersaturation, resulting in the increase of porosity in the crystal layer. The establishment of crystal growth rate equation and liquid entrapment rate equation has important significance for the control of the crystal layer growth by adjusting the liquid film supersaturation in the industrial paraxylene production by falling film crystallization.

Key words: paraxylene, crystallization, kinetics, optimization, supersaturation, porosity

中图分类号: 

  • TQ026.7

[1] LIN Z, NIKOLAKIS V, IERAPETRITOU M G. Life cycle assessment of biobased p-xylene production[J]. Industrial & Engineering Chemistry Research, 2015, 54(8):2366-2378.
[2] 陈亮, 肖剑, 谢在库, 等. 对二甲苯悬浮熔融结晶动力学[J]. 化工学报, 2009, 60(11):2787-2791. CHEN L, XIAO J, XIE Z K, et al. Suspension melt crystallization kinetics of p-xylene[J]. CIESC Journal, 2009, 60(11):2787-2791.
[3] 宋书恒. 对二甲苯熔融结晶过程实验及数学模型研究[D]. 湘潭:湘潭大学, 2016. SONG S H. The crystallization purification process and mathematical model of paraxylene[D]. Xiangtan:Xiangtan University, 2016.
[4] 沈澍, 李士雨. 熔融结晶法分离提纯对二甲苯[J]. 化工进展, 2017, 36(5):1605-1611. SHEN S, LI S Y. Purification of p-xylene by melt crystallization[J]. Chemical Industry and Engineering Progress, 2017, 36(5):1605-1611.
[5] BLANKS R F. In-line measurement of crystallization kinetics for paraxylene recovery by continuous melt crystallization slurry process industrial crystallization[J]. Symposium on Industrial Crystallization, 2001, 2:5-063-5-068.
[6] 陈亮, 肖剑, 谢在库, 等. 对二甲苯结晶分离技术进展[J]. 现代化工, 2009, 29(2):10-14. CHEN L, XIAO J, XIE Z K, et al. Advances in p-xylene separation by crystallization[J]. Modern Chemical Industry, 2009, 29(2):10-14.
[7] 朱静, 丁雪峰, 李天祥, 等. 降膜结晶法在高纯硫酸制备中的应用[J]. 无机盐工业, 2014, 46(6):38-41. ZHU J, DING X F, LI T X, et al. Application of falling film crystallization process in preparation of high-purity sulfuric acid[J]. Inorganic Chemical Industry, 2014, 46(6):38-41.
[8] 朱政. 熔融结晶法提纯β-甲基萘研究[D]. 天津:天津大学, 2007. ZHU Z. The purification of β-methylnaphthalene by melt crystallization[D]. Tianjin:Tianjin University, 2007.
[9] KASYMBEKOV B A, MYASNIKOV S K, MALYUSOV V A. Separation of substances by fractional crystallization from outflowing liquid films[J]. Theoretical Foundations of Chemical Engineering, 1985, 19(1):15-21.
[10] 江建军. 液膜结晶过程的研究[D]. 天津:天津大学, 1988. JIANG J J. Study on the crystallization process of liquid film[D]. Tianjin:Tianjin University, 1988.
[11] BEIERLING T, MICOVIC J, LUTZE P, et al. Using complex layer melt crystallization models for the optimization of hybrid distillation/melt crystallization processes[J]. Chemical Engineering & Processing Process Intensification, 2014, 85:10-23.
[12] 张政, 张建文. 降膜结晶分离过程热、质及动量传递的数值模拟(Ⅰ):分区域统一模型[J]. 化工学报, 2001, 52(7):580-586. ZHANG Z, ZHANG J W. Numerical modeling of coupled momentum heat and mass transport in falling crystallization process (Ⅰ):Continuum model[J]. Journal of Chemical Industry and Engineering(China), 2001, 52(7):580-586.
[13] 张建文, 张政. 降膜结晶分离过程热、质及动量传递的数值模拟(Ⅱ):模拟计算[J]. 化工学报, 2001, 52(7):587-592. ZHANG J W, ZHANG Z. Numerical modeling of coupled momentum heat and mass transport in falling film crystallization process (Ⅱ):Simulation[J]. Journal of Chemical Industry and Engineering(China), 2001, 52(7):587-592.
[14] 刘安. 内外双降膜熔融结晶过程数值模拟[D]. 天津:天津大学, 2009. LIU A. Numerical simulation of double falling film melt crystallization process[D]. Tianjin:Tianjin University, 2009.
[15] BENNON W D, INCROPERA F P. A continuum model for momentum heat and species transport in binary solid-liquid phase change systems(Ⅰ):Model formulation[J]. International Journal of Heat & Mass Transfer, 1987, 30(10):2161-2170.
[16] BENNON W D, INCROPERA F P. A continuum model for momentum heat and species transport in binary solid-liquid phase change systems(Ⅱ):Application to solidification in a rectangular cavity[J]. International Journal of Heat & Mass Transfer, 1987, 30(10):2171-2187.
[17] BENNON W D, INCROPERA F P. Numerical analysis of binary solid-liquid phase change using a continuum model[J]. Numerical Heat Transfer, 1988, 13(3):277-296.
[18] JIANG X, HOU B, ZHAO Y, et al. Kinetics study on the liquid entrapment and melt transport of static and falling-film melt crystallization[J]. Industrial & Engineering Chemistry Research, 2012, 51(13):5037-5044.
[19] ZHANG B, YU B M, WANG H X, et al. A fractal analysis of permeability for power-law fluids in porous media[J]. Fractals-complex Geometry Patterns & Scaling in Nature & Society, 2006, 14(3):171-177.
[20] CAI J, YU B, ZOU M, et al. Fractal analysis of invasion depth of extraneous fluids in porous media[J]. Chemical Engineering Science, 2010, 65(18):5178-5186.
[21] JIANG X, HOU B, HE G, et al. Falling film melt crystallization (Ⅱ):Model to simulate the dynamic sweating using fractal porous media theory[J]. Chemical Engineering Science, 2013, 91(2):111-121.
[22] JIANG X, HOU B, WANG J, et al. Model to simulate the structure of a crystal pillar and optimize the separation efficiency in melt crystallization by fractal theory and technique[J]. Industrial & Engineering Chemistry Research, 2011, 50(17):10229-10245.
[23] SCHOLZ R, WANGNICK K, ULRICH J. On the distribution and movement of impurities in crystalline layers in melt crystallization processes[J]. Journal of Physics D Applied Physics, 1993, 26(8B):B156.
[24] BEAR J. Dynamics of Fluids in Porous Media[M]. America:Elsevier Pub. Co., 1972.
[25] HADDON W F, JOHNSON J F. Solubility data for p-xylene[J]. J. Chem. Eng. Data, 1964, 9(1):158-159.
[26] 车冠全, 古喜兰. 间二甲苯+对二甲苯二元系的固液相平衡[J]. 化学通报, 1995, (6):50-52. CHE G Q, GU X L. Solid-liquid equilibrium of system of m-xylene and p-xylene[J]. Chemistry, 1995, (6):50-52.
[27] JAKOB A, JOH R, ROSE C, et al. Solid-liquid equilibria in binary mixtures of organic compounds[J]. Fluid Phase Equilibria, 1995, 113(1):117-126.
[28] PORTER R S, JOHNSON J F. Extended xylene solubility studies[J]. Journal of Chemical & Engineering Data, 2002, 12(3):392-394.
[29] 郭艳姿. 二甲苯同分异构体二元系固-液相平衡研究[D]. 上海:同济大学, 2006. GUO Y Z. Study on the solid-liquid equilibrium of xylene isomer binary systems[D]. Shanghai:Tongji University, 2006.
[30] 陈亮, 肖剑, 谢在库, 等. 对二甲苯结晶过程的固液相平衡研究[J]. 聚酯工业, 2009, 22(1):7-11. CHEN L, XIAO J, XIE Z K, et al. Solid-liquid equilibrium study of p-xylene crystallization process[J]. Polyester Industry, 2009, 22(1):7-11.
[31] 郭思斯. 二甲苯同分异构体三元系固-液相平衡研究[D]. 上海:同济大学, 2008. GUO S S. Study on the solid-liquid equilibrium of xylene isomer ternary systems[D]. Shanghai:Tongji University, 2008.

[1] 李德生, 张超, 邓时海, 胡智丰, 李金龙, 刘元辉. 基于铁基质高效催化还原污水中硝酸盐氮的实验研究[J]. 化工学报, 2019, 70(3): 1065-1074.
[2] 张千, 刘向阳, 陈旺, 吴恒, 肖芃颖, 吉芳英, 李宸, 念海明. 新型除磷填料的制备及除磷吸附床运行参数的优化[J]. 化工学报, 2019, 70(3): 1099-1110.
[3] 徐奇超, 江锦波, 彭旭东, 李纪云, 王玉明. 基于遗传算法的干气密封双向槽统一模型与参数优化[J]. 化工学报, 2019, 70(3): 995-1005.
[4] 周雪冰, 刘婵娟, 罗金琼, 梁德青. 甲烷水合物分解过程的微尺度测量[J]. 化工学报, 2019, 70(3): 1042-1047.
[5] 何昌春, 徐磊, 陈伟, 徐晓峰, 欧阳鹏威. 常顶系统流动腐蚀机理预测及防控措施优化[J]. 化工学报, 2019, 70(3): 1027-1034.
[6] 杨杰, 祁江羽, 沙勇. 反应精馏隔壁塔制甲缩醛过程模拟与分析[J]. 化工学报, 2019, 70(3): 960-968.
[7] 石博文, 尹燕燕, 刘飞. 基于PSO-控制变量参数化混合策略的间歇化工过程优化控制[J]. 化工学报, 2019, 70(3): 979-986.
[8] 牟鹏, 顾祥柏, 朱群雄. 基于P-graph的乙烯裂解原料调度建模与优化[J]. 化工学报, 2019, 70(2): 556-563.
[9] 刘奇磊, 冯锟, 刘琳琳, 都健, 孟庆伟, 张磊. 基于Dragon描述符与改进的决策树-遗传算法的反应溶剂设计方法[J]. 化工学报, 2019, 70(2): 533-540.
[10] 郭孝正, 刘琳琳, 张磊, 都健. 基于截断器半连续操作的间歇过程性质集成[J]. 化工学报, 2019, 70(2): 516-524.
[11] 朱顺, 郭琦, 张大伟, 杨庆春. 集成CO2高效利用的煤制乙二醇过程设计与系统分析[J]. 化工学报, 2019, 70(2): 772-779.
[12] 胡松, 李进龙, 李木金, 杨卫胜. 萃取精馏生产高纯度环氧丙烷的工艺研究[J]. 化工学报, 2019, 70(2): 670-677.
[13] 叶贞成, 周换兰, 饶德宝. 乙炔加氢反应过程混合建模与优化[J]. 化工学报, 2019, 70(2): 496-507.
[14] 吴长昊, 刘琳琳, 张磊, 都健. 采用两种中间介质的工业园区厂际余热集成[J]. 化工学报, 2019, 70(2): 431-439.
[15] 王沈晗, 康仑巍, 张冰剑, 陈清林, 潘明, 何畅. 反渗透和压力延迟渗透耦合脱盐系统的能效优化研究[J]. 化工学报, 2019, 70(2): 617-624.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!