化工学报 ›› 2018, Vol. 69 ›› Issue (8): 3331-3337.doi: 10.11949/j.issn.0438-1157.20180133

• 热力学 • 上一篇    下一篇

范德华力对Lennard-Jones体黏弹性的影响

季佳圆, 赵伶玲   

  1. 东南大学能源热转换及其过程测控教育部重点实验室, 能源与环境学院, 江苏 南京 210096
  • 收稿日期:2018-01-30 修回日期:2018-04-23 出版日期:2018-08-05 发布日期:2018-05-18
  • 通讯作者: 赵伶玲 E-mail:zhao_lingling@seu.edu.cn
  • 基金资助:

    国家自然科学基金项目(51776041);中央高校基本科研业务费专项资金资助项目(2242017K1G004)。

van der Waals' force effect on viscoelasticity of Lennard-Jones fluid

JI Jiayuan, ZHAO Lingling   

  1. Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy & Environment, Southeast University, Nanjing 210096, Jiangsu, China
  • Received:2018-01-30 Revised:2018-04-23 Online:2018-08-05 Published:2018-05-18
  • Supported by:

    supported by the National Natural Science Foundation of China(51776041) and the Fundamental Research Funds for the Central Universities(2242017K1G004).

摘要:

采用平衡态分子模拟方法对ρ*=0.85~1.0,T*=0.6~1.5范围内共30组的液固共存态Lennard-Jones体的黏弹性进行研究。模拟所得真实物质Ar的约化黏度与实验值误差为6.69%,验证了本模型对真实物质的可拓展性;同时,液固共存态下Lennard-Jones体模型的黏度模拟值与文献值吻合较好,误差小于5.16%,模拟精度较高。从环境参数(T*ρ*)和分子参数(L-J势参数ε、σ)两方面,观测了Lennard-Jones体的静态(黏度η*、无限大频率的剪切模量G*)及动态(储能模量G'*、损耗模量G"*)黏弹性的变化规律,并在此基础上解释范德华力对黏弹性的影响机理。结果表明,ρ*升高或T*降低将导致η*G*的升高,而T*ρ*的升高则会使得中高频区的G'*G"*增大;L-J势参数ε、σ的增大均能促进体系固态化,增强其静态及动态黏弹性,可为工程上高效利用单原子物质的黏弹性提供理论指导。

关键词: 分子模拟, 黏弹性, 黏度, 弹性, 范德华力

Abstract:

In order to reveal the influence of van der Waals' force on Lennard-Jones fluid viscoelasticity from the micro scale, equilibrium molecular simulation method was used to research the liquid-solid coexistence Lennard-Jones fluid of 30 conditions in the range of ρ*=0.85-1.0 and T*=0.6-1.5 in this study. First, the viscosity of argon is simulated by this model and the results are consistent with the experimental value of the error within 6.69%, which verifies the expansibility of the model to the real substance. Then the liquid-solid coexistence Lennard-Jones fluids simulated, and the accuracy of the simulation in this range is verified by comparing the simulation viscosities with the literature values within the error of 5.16%. Finally, the variation of both static viscoelasticity (viscosity η*, high-frequency shear modulus G*) and dynamic viscoelasticity (storage modulus G'*, loss modulus G"*) were observed from the external factors (temperature and density) and internal factors (Lennard-Jones potential parameters, ε and σ), in addition, the microscopic mechanism of van der Waals' force effect on the viscoelasticity was elaborated as well. The results show that both density increment and temperature decrement lead to the increase of the static viscoelasticity (η*, G*), meanwhile, G'* and G"* in the high frequency region were also increased by the increment of temperature and density, which suggests the enhancement of the viscosity and elasticity. Furthermore, when Lennard-Jones potential parameter, ε or σ increases, the Lennard-Jones fluid tends to be more solidified, this enhances both static and dynamic viscoelasticity and provides a guide to improve the viscoelastic properties of monatomic material in the engineering applications.

Key words: molecular simulation, viscoelasticity, viscosity, elasticity, van der Waals' force

中图分类号: 

  • O345

[1] TANG Z, KOTOV N A, MAGONOV S, et al. Nanostructured artificial nacre[J]. Nat. Mater., 2003, 2(6):413-418.
[2] RAO M D. Recent applications of viscoelastic damping for noise control in automobiles and commercial airplanes[J]. J. Sound. Vib., 2003, 262(3):457-474.
[3] LAKES R S. Viscoelastic Materials[M]. New York:Cambridge University Press, 2009:207-257.
[4] PUEBLO C E, SUN M, KELTON K F. Strength of the repulsive part of the interatomic potential determines fragility in metallic liquids[J]. Nat. Mater., 2017, 16(8):792-796.
[5] SEN S, KUMMAR S K, KEBLINSKI P. Viscoelastic properties of polymer melts from equilibrium molecular dynamics simulations[J]. Macromolecules, 2005, 38(3):650-653.
[6] LEE S H. Equilibrium molecular dynamics simulation study for transport properties of noble gases:the Green-Kubo formula[J]. Bull. Korean Chem. Soc., 2013, 34(10):2931-2936.
[7] VIPIN A, KRISTIN H, WIROJ N, et al. Prediction of viscoelastic properties with coarse-grained molecular dynamics and experimental validation for a benchmark polyurea system[J]. J. Polym. Sci., Part B:Polym. Phys., 2016, 54(8):797-810.
[8] HATTEMER G D, ARYA G. Viscoelastic properties of polymer-grafted nanoparticle composites from molecular dynamics simulations[J]. Macromolecules, 2015, 48(4):1240-1255.
[9] YU H B, RICHERT R, SAMWER K. Correlation between viscoelastic moduli and atomic rearrangements in metallic glasses[J]. J. Phys. Chem. Lett., 2016, 7(19):3747-3751.
[10] MEIER K, LAESECKE A, KABELAC S. Transport coefficients of the Lennard-Jones model fluid(Ⅱ):Self-diffusion[J]. J. Chem. Phys., 2004, 121(19):9526-9535.
[11] VELDHORST A A, SCHRODER T B, DYRE J C. Pair potential that reproduces the shape of isochrones in molecular liquids[J]. J. Phys. Chem. B, 2016, 120(32):7970-7974.
[12] MEIER K, LAESECKE A, KABELAC S. Transport coefficients of the Lennard-Jones model fluid(Ⅰ):Viscosity[J]. J. Chem. Phys., 2004, 121(8):3671-3687.
[13] HEYES D M, DINI D, BRA?KA A C. Scaling of Lennard-Jones liquid elastic moduli, viscoelasticity and other properties along fluid-solid coexistence[J]. Phys. Status Solidi B, 2015, 252(7):1514-1525.
[14] HEYES D M, BRA?KA A C. The Lennard-Jones melting line and isomorphism[J]. J. Chem. Phys., 2015, 143(23):234504.
[15] GALLIE?O G, BONED C, BAYLAUCQ A. Molecular dynamics study of the Lennard-Jones fluid viscosity:application to real fluids[J]. Ind. Eng. Chem. Res., 2005, 44(17):6963-6972.
[16] PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. J. Comput. Phys., 1995, 117(1):1-19.
[17] 范康年. 物理化学[M]. 2版. 北京:高等教育出版社, 2005:222. FAN K N. Physical Chemistry[M]. 2nd ed. Beijing:Higher Education Press, 2005:222.
[18] TAKAHASHI K, YASUOKA K, NARUMI T. Cutoff radius effect of isotropic periodic sum method for transport coefficients of Lennard-Jones liquid[J]. J. Chem. Phys., 2007, 127(11):044107.
[19] HOOVER W G. Canonical dynamics:equilibrium phase-space distributions[J]. Phys. Rev. A, 1985, 31(3):1695.
[20] LEE S H. Transport properties of Lennard-Jones mixtures:a molecular dynamics simulation study[J]. Bull. Korean Chem. Soc., 2008, 29(3):641-646.
[21] EVANS D J, HOLIAN B L. The Nose-Hoover thermostat[J]. J. Chem. Phys., 1985, 83(8):4079-4074.
[22] MORISHITA T. From Nosé-Hoover chain to Nosé-Hoover network:design of non-Hamiltonian equations of motion for molecular-dynamics with multiple thermostats[J]. Mol. Phys., 2010, 108(10):1337-1347.
[23] GREEN M S. Markoff random processes and the statistical mechanics of time-dependent phenomena[J]. J. Chem. Phys., 1954, 22(3):398-413.
[24] KUDO R, TODA M, HASHITSUME N. Statistical Physics Ⅱ[M]. 2nd ed. Heidelberg:Springer Press, 1985:40-108.
[25] BOON J P, YIP S. Molecular Hydrodynamics[M]. New York:Dover Publications, 1991:141-159.
[26] HATTKAMP R, DAIVIS P J, TODD B D. Density dependence of the stress relaxation function of a simple fluid[J]. Phys. Rev. E:Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2013, 87(3):032155.
[27] BARNES S C, LAWLESS B M, SHEPHERD D E T. Viscoelastic properties of human bladder tumours[J]. J. Mech. Behav. Biomed. Mater., 2016, 61(3):250-257.
[28] ABIDINE Y, LAURENT V M, MICHEL R. Local mechanical properties of bladder cancer cells measured by AFM as a signature of metastatic potential[J]. Eur. Phys. J. Plus, 2015, 130(10):202.
[29] YOUNGLOVE B A, HANLEY H J M. The viscosity and thermal conductivity coefficients of gaseous and liquid argon[J]. J. Phys. Chem. Ref. Data, 1986, 15(4):1323-1337.
[30] MORSALI A, GOHARSHADI E K, SHAHTAHMASBI N. Evaluation of high-frequency elastic moduli and shear relaxation time of the Lennard-Jones fluid using three known analytical expressions for radial distribution function[J]. Chem. Phys., 2006, 322(3):377-381.
[31] HATADA T, KOBORI T, ISHIDA M. Dynamic analysis of structures with Maxwell model[J]. Earthquake. Eng. Struct. Dyn., 2012, 29(2):159-176.

[1] 周钰寒, 陈晓玉, 左成, 郭庆杰, 赵军. 废纸纤维素/SiO2复合气凝胶的性能[J]. 化工学报, 2019, 70(3): 1120-1126.
[2] 王磊, 方桂英, 阳庆元. 金属-有机骨架材料CO2捕获性能的大规模计算筛选[J]. 化工学报, 2019, 70(3): 1135-1143.
[3] 王振有, 刘会娥, 朱佳梦, 陈爽, 于安然. 乳液法制备聚乙烯醇-石墨烯气凝胶及其对纯有机物的吸附[J]. 化工学报, 2019, 70(3): 1152-1162.
[4] 梁馨元, 张磊, 刘琳琳, 都健. 基于分子动力学的橡胶聚合物计算机辅助设计方法[J]. 化工学报, 2019, 70(2): 525-532.
[5] 蔡惊涛, 李代禧, 刘宝林, 栾翰森, 郭柏松, 魏冬青, 王浩. 尿素(520)晶面可控结晶的分子动力学模拟[J]. 化工学报, 2019, 70(1): 128-135.
[6] 向文军, 朱朝菊, 刘丹, 周绿山. 分子动力学模拟研究两亲聚合物与疏水纳米粒子自组装核-壳结构[J]. 化工学报, 2019, 70(1): 345-354.
[7] 周云龙, 卢志叶, 王猛. 基于递归分析的喷雾气固流化床团聚状态识别[J]. 化工学报, 2018, 69(9): 3835-3842.
[8] 刘凡犁, 刘广志, 王沫然. 微纳孔隙中复杂流体液滴驱替的跨尺度混合模拟[J]. 化工学报, 2018, 69(9): 3783-3791.
[9] 齐畅, 卢滇楠, 刘永民. 优化温度相关力场预测正构烷烃热力学性质[J]. 化工学报, 2018, 69(8): 3338-3347.
[10] 敬加强, 尹然, 马孝亮, 孙杰, 吴嬉. 水平管稠油掺气减阻模拟实验[J]. 化工学报, 2018, 69(8): 3398-3407.
[11] 任常在, 王文龙, 李国麟, 王彪. 固废基硫铝酸盐胶凝材料用于建筑3D打印的特性与过程仿真[J]. 化工学报, 2018, 69(7): 3270-3278.
[12] 陈超, 赵伶玲, 王镜凡. 甲胺铅碘钙钛矿物性及制备过程的分子模拟[J]. 化工学报, 2018, 69(6): 2380-2387.
[13] 冯飙, 邵雪峰, 朱子钦, 范利武. 赤藓糖醇微观固液相变及热传导的分子动力学研究[J]. 化工学报, 2018, 69(6): 2388-2395.
[14] 李川, 张强强, 李中洋, 凤维民, 刘天霞, 胡献国. 生物柴油碳烟分散特性对液体石蜡摩擦学行为的影响[J]. 化工学报, 2018, 69(6): 2612-2620.
[15] 李壮楣, 王艳美, 李平, 李和平, 白红存, 郭庆杰. 宁东红石湾煤大分子模型构建及量子化学计算[J]. 化工学报, 2018, 69(5): 2208-2216.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曹兴,杜文静,程林. 连续螺旋折流板换热器流动与传热性能及熵产分析[J]. 化工学报, 2012, 63(8): 2375 -2382 .
[2] 张兰河,李军,郭静波,贾艳萍,张海丰. EPS对活性污泥絮凝沉降性能与表面性质的影响[J]. 化工学报, 2012, 63(6): 1865 -1871 .
[3] 陈卫东, 孙彦. 吸附密度对蛋白质在离子交换吸附剂中孔扩散系数的影响 [J]. 化工学报, 2003, 54(2): 215 -220 .
[4] 周新建, 陈听宽. 引射喷嘴流量系数的计算方法 [J]. 化工学报, 2002, 53(10): 1092 -1094 .
[5] 孙庆雷, 李文, 李保庆. 神木煤热解的挥发分收率与岩相组成的关系 [J]. 化工学报, 2003, 54(2): 269 -272 .
[6] 刘唐, 骞伟中, 汪展文, 魏飞, 金涌, 李俊诚, 李永丹. 流化床中甲烷催化裂解制备碳纳米管和氢气 [J]. 化工学报, 2003, 54(11): 1614 -1618 .
[7] 赵宗彬, 李文, 李保庆. 矿物质对煤焦燃烧过程中NO释放规律的影响 [J]. 化工学报, 2003, 54(1): 100 -106 .
[8] 李瑞, 许春建, 曾爱武, 周明. 精馏塔板上双液层三维模型的流体力学计算 [J]. 化工学报, 2003, 54(2): 159 -163 .
[9] 詹水清1,周孑民1,吴烨2,李远1,梁艳南1,杨莺1. 高温熔盐热物性的动态测定与误差修正方法[J]. 化工学报, 2012, 63(8): 2341 -2347 .
[10] 韩佳宾, 王静康. 咖啡因在水和乙醇中的溶解度及其关联 [J]. 化工学报, 2004, 55(1): 125 -128 .