化工学报 ›› 2018, Vol. 69 ›› Issue (10): 4200-4205.doi: 10.11949/j.issn.0438-1157.20180125

• 流体力学与传递现象 • 上一篇    下一篇

改性SiO2纳米颗粒沸腾沉积层的形成原理及其沸腾换热

王东民1, 董丽宁2, 全晓军1   

  1. 1. 上海交通大学机械与动力工程学院, 上海 200240;
    2. 上海卫星工程研究所, 上海 200240
  • 收稿日期:2018-01-29 修回日期:2018-07-02 出版日期:2018-10-05 发布日期:2018-07-12
  • 通讯作者: 全晓军 E-mail:quan_xiaojun@sjtu.edu.cn
  • 基金资助:

    国家自然科学基金项目(51406122)。

Deposition mechanisms and boiling heat transfer of modified SiO2 nanoparticles deposition layer in boiling experiments

WANG Dongmin1, DONG Lining2, QUAN Xiaojun1   

  1. 1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
    2. Shanghai Institute of Satellite Engineering, Shanghai 200240, China
  • Received:2018-01-29 Revised:2018-07-02 Online:2018-10-05 Published:2018-07-12
  • Supported by:

    supported by the National Natural Science Foundation of China(51406122).

摘要:

实验研究了改性SiO2纳米流体液滴蒸发后的沉积图案,以及改性SiO2纳米颗粒沸腾沉积层对沸腾换热的影响。液滴蒸发实验研究表明:改性官能团会影响改性SiO2纳米颗粒是否吸附在液-气界面,从而推断出在沸腾过程中改性官能团对纳米颗粒沉积方式的影响。沸腾实验研究结果表明:用聚乙二醇基团改性的SiO2纳米颗粒沸腾沉积层使加热面的平均粗糙度从160 nm大幅增长到977 nm,且能增强纯水的沸腾传热系数;而用磺酸基团改性的SiO2纳米颗粒沸腾沉积层对加热面的平均粗糙度的改变不明显,只使其增大了60 nm,且恶化了纯水的沸腾传热系数。通过沸腾换热实验结果较好地验证了通过液滴蒸发实验推断出的沸腾过程中改性官能团对纳米颗粒沉积方式的影响。

关键词: 二氧化硅, 纳米粒子, 蒸发, 沉积物, 沸腾换热

Abstract:

Different drying patterns of modified SiO2 nanofluid droplets have been observed and the effects of modified SiO2 nanoparticle deposition layer formed in boiling on pure water boiling heat transfer have also been investigated experimentally. The different drying patterns of nanofluid droplets show that modified function groups can affect whether SiO2 nanoparticles can be adsorbed to the liquid-air interface, and based on this result a conjecture has been made about the effects of modified functional groups on the way of nanoparticle deposition during boiling of nanofluids. From boiling experiments, it is found that polyethylene glycol (PEG) groups modified SiO2 nanoparticles deposition layer on a heater surface can increase average roughness of the heater surface a lot from 160 nm to 977 nm, and it can also increase pure water boiling heat transfer coefficient. However, the sulfonic acid groups modified SiO2 nanoparticles deposition layer on a heater surface affect average roughness of the heater surface a little (increased 60 nm), and it deteriorates the pure water boiling heat transfer coefficient. The effects of modified functional groups on the deposition of nanoparticles during the boiling process inferred by droplet evaporation experiments were verified by boiling heat transfer experiments.

Key words: silica, nanoparticles, evaporation, deposition, boiling heat transfer

中图分类号: 

  • TK124

[1] CAREY V P, CHEN G, GRIGOROPOULOS C, et al. A review of heat transfer physics[J]. Nanoscale and Microscale Thermophysical Engineering, 2008, 12(1):1-60.
[2] 牛小飞, 李志学, 徐永明. 强化传热技术及其应用[J]. 广州化工, 2009, 37(9):43-51. NIU X F, LI Z X, XU Y M. Enhanced heat transfer technology and its applications[J]. Guangzhou Chemical Industry, 2009, 37(9):43-51.
[3] 李洪亮. 强化传热技术及其应用[J]. 化工设备与防腐蚀, 2002, 5(2):111-113. LI H L. Enhanced heat transfer technology and its applications[J]. Chemical Equipment and Anticorrosion, 2002, 5(2):111-113.
[4] XUAN Y, ROETZEL W. Conceptions for heat transfer correlation of nanofluids[J]. International Journal of Heat and Mass Transfer, 2000, 43(19):3701-3707.
[5] JANG S P, CHOI S U S. Role of Brownian motion in the enhanced thermal conductivity of nanofluids[J]. Applied Physics Letters, 2004, 84(21):4316-4318.
[6] WU J M, ZHAO J. A review of nanofluid heat transfer and critical heat flux enhancement-research gap to engineering application[J]. Progress in Nuclear Energy, 2013, 66(5):13-24.
[7] VAFAEI S. Nanofluid pool boiling heat transfer phenomenon[J]. Powder Technology, 2015, 277:181-192.
[8] CHOI S U S, EASTAMAN J A. Enhancing thermal conductivity of fluids with nanoparticles[J]. Asme. Fed., 1995, 231(1):99-105.
[9] KIM S J, BANG I C, BUONGIORNO J, et al. Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux[J]. International Journal of Heat and Mass Transfer, 2007, 50(19/20):4105-4116.
[10] KWARK S M, KUMAR R, MORENO G, et al. Pool boiling characteristics of low concentration nanofluids[J]. International Journal of Heat and Mass Transfer, 2010, 53(5):972-981.
[11] SEFIANE K. On the role of structural disjoining pressure and contact line pinning in critical heat flux enhancement during boiling of nanofluids[J]. Applied Physics Letters, 2006, 89(4):044106.
[12] DEEGAN R D, BAKAJIN O, DUPONT T F, et al. Capillary flow as the cause of ring stains from dried liquid drops[J]. Nature, 1997, 389(6653):827-829.
[13] YUNKER P J, STILL T, LOHR M A, et al. Suppression of the coffee-ring effect by shape-dependent capillary interactions[J]. Nature, 2011, 476(7360):308-311.
[14] CRIVOI A, DUAN F. Effect of surfactant on the drying patterns of graphite nanofluid droplets[J]. Journal of Physical Chemistry B, 2013, 117(19):5932-5938.
[15] CRIVOI A, DUAN F. Elimination of the coffee-ring effect by promoting particle adsorption and long-range interaction[J]. Langmuir, 2013, 29(39):12067.
[16] ZHANG Y J, LIU Z T, ZANG D Y, et al. Pattern transition and sluggish cracking of colloidal droplet deposition with polymer additives[J]. Science China(Physics, Mechanics & Astronomy), 2013, 56(9):1712-1718.
[17] DAS S K, PUTRA N, ROETZEL W. Pool boiling characteristics of nano-fluids[J]. International Journal of Heat and Mass Transfer, 2003, 46(5):851-862.
[18] NARAYAN G P, ANOOP K B, DAS S K. Mechanism of enhancement/deterioration of boiling heat transfer using stable nanoparticle suspensions over vertical tubes[J]. Journal of Applied Physics, 2007, 102(7):074317.
[19] TRUONG B, HU L W, BUONGIORNO J, et al. Modification of sandblasted plate heaters using nanofluids to enhance pool boiling critical heat flux[J]. International Journal of Heat and Mass Transfer, 2010, 53(1/2/3):85-94.
[20] JONES B J, MCHALE J P, GARIMELLA S V. The Influence of surface roughness on nucleate pool boiling heat transfer[J]. Journal of Heat Transfer, 2009, 131(12):121009.
[21] MOURGUES A, HOURTANE V, MULLER T, et al. Boiling behaviors and critical heat flux on a horizontal and vertical plate in saturated pool boiling with and without ZnO nanofluid[J]. International Journal of Heat and Mass Transfer, 2013, 57(2):595-607.
[22] YANG X F, LIU Z H. Pool boiling heat transfer of functionalized nanofluid under sub-atmospheric pressures[J]. International Journal of Thermal Sciences, 2011, 50(12):2402-2412.
[23] STOBER W, FINK A, BOHN E. Controlled growth of monodisperse silica spheres in the micron size range[J]. Journal of Colloid and Interface Science, 1968, 26(1):62-69.
[24] 张永建. 胶体液滴的蒸发及其自组装图案调控机制研究[D]. 西安:西北工业大学, 2015. ZHANG Y J. Tuning of self-assembly patterns induced by the evaporation of colloidal droplets[D]. Xi'an:Northwestern Polytechnical University, 2015.
[25] WASAN D T, NIKOLOV A D. Spreading of nanofluids on solids[J]. Nature, 2003, 423(6936):156-159.
[26] CHENGARA A, NIKOLOV A D, WASAN D T, et al. Spreading of nanofluids driven by the structural disjoining pressure gradient[J]. Journal of Colloid and Interface Science, 2004, 280(1):192-201.
[27] WEN D. Mechanisms of thermal nanofluids on enhanced critical heat flux (CHF)[J]. International Journal of Heat and Mass Transfer, 2008, 51(19):4958-4965.
[28] XU L, XU J. Nanofluid stabilizes and enhances convective boiling heat transfer in a single microchannel[J]. International Journal of Heat and Mass Transfer, 2012, 55(21/22):5673-5686.
[29] KRALCHEVSKY P A, NAGAYAMA K. Capillary forces between colloidal particles[J]. Langmuir, 1994, 10(1):23-36.
[30] KRALCHEVSKY P A, DENKOV N D. Capillary forces and structuring in layers of colloid particles[J]. Current Opinion in Colloid and Interface Science, 2001, 6(4):383-401.

[1] 常景彩, 王翔, 王鹏, 崔琳, 李军, 张鑫, 马春元. 静电场中极板表面液膜蒸发特性研究[J]. 化工学报, 2019, 70(3): 865-873.
[2] 刘小诗, 邹得球, 贺瑞军, 马先锋. 氧化石墨烯/石蜡复合相变乳液的制备及对流传热特性[J]. 化工学报, 2019, 70(3): 1188-1197.
[3] 李龙, 葛天舒, 吴宣楠, 代彦军. 硅胶嵌入多孔纸基对苯蒸气吸附性能[J]. 化工学报, 2019, 70(3): 951-959.
[4] 闫鑫, 徐进良. 超疏水表面太阳能加热金-水纳米流体液滴蒸发特性[J]. 化工学报, 2019, 70(3): 892-900.
[5] 张航, 翁建华, 崔晓钰. 吸湿性盐溶液振荡热管的传热特性研究[J]. 化工学报, 2019, 70(3): 874-882.
[6] 叶飞飞, 张宝丹, 靳海波, 郭晓燕, 何广湘, 张荣月, 谷庆阳, 杨索和. 微通道反应器合成纳米BaSO4颗粒及其在干片多功能层上的应用[J]. 化工学报, 2019, 70(3): 1179-1187.
[7] 王凯, 王德武, 侯得印, 袁子怡, 王军. 自组装法制备PVDF-SiO2/PVSQ超疏水复合膜及膜蒸馏抗污染性能[J]. 化工学报, 2019, 70(1): 298-308.
[8] 潘佩媛, 陈衡, 焦健, 梁志远, 赵钦新. 湿法脱硫后烟气腐蚀现场实验研究[J]. 化工学报, 2019, 70(1): 161-169.
[9] 王婵娜, 刘令, 王慧华, 屈天鹏, 田俊, 王德永, 康振辉. Co-Fe-Pd纳米粒子的可控制备及其氧还原催化性能[J]. 化工学报, 2019, 70(1): 319-326.
[10] 潘璐璐, 吴丹菁, 刘维平. MFC-MEC耦合系统产电性能及处理含镉重金属废水的研究[J]. 化工学报, 2019, 70(1): 242-250.
[11] 闫鸿志, 胡斌, 王如竹. 水-水降膜蒸发器的模拟仿真和优化[J]. 化工学报, 2018, 69(S2): 68-75.
[12] 熊晓俊, 何婷, 林文胜. 利用常温压缩机处理LNG接收站BOG的工艺探讨[J]. 化工学报, 2018, 69(S2): 425-430.
[13] 余超群, 臧润清, 段振坤. 太阳能蒸汽喷射式制冷机性能[J]. 化工学报, 2018, 69(S2): 205-209.
[14] 梁星宇, 刘洪鑫, 曹祥, 邵亮亮, 张春路. 压缩机和喷射器耦合的双级蒸发喷射循环性能分析[J]. 化工学报, 2018, 69(S2): 26-30.
[15] 许婧煊, 林文胜, 阮斌辉. 浸没燃烧式LNG气化器传热计算初探[J]. 化工学报, 2018, 69(S2): 147-152.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!