化工学报 ›› 2018, Vol. 69 ›› Issue (7): 2985-2992.doi: 10.11949/j.issn.0438-1157.20180104

• 催化、动力学与反应器 • 上一篇    下一篇

甲烷化梅花状催化剂CFD计算及改进

张杰, 李涛   

  1. 华东理工大学大型反应器工程教育部工程研究中心, 上海 200237
  • 收稿日期:2018-01-23 修回日期:2018-03-09 出版日期:2018-07-05 发布日期:2018-03-14
  • 通讯作者: 李涛 E-mail:tli@ecust.edu.cn

Application of CFD to improve calculated process of methanation over plum-shaped catalyst

ZHANG Jie, LI Tao   

  1. Engineering Research Center of Large Scale Reactor Engineering and Technology, East China University of Science and Technology, Shanghai 200237, China
  • Received:2018-01-23 Revised:2018-03-09 Online:2018-07-05 Published:2018-03-14

摘要:

对合成气甲烷化反应体系进行CFD(计算流体动力学)计算,并对模型提出合理的改进。通过建立合理的甲烷化梅花状催化剂颗粒三维模型进行计算,并验证了模型的有效性。结果表明:甲烷化反应内扩散阻力很大,CO在催化剂表面与内部存在明显的浓度差。且H2与CO扩散速率不同,导致催化剂内部的氢碳比很高,内部的反应条件与催化剂表面相比发生改变,使用单一的动力学方程无法准确描述实际的反应过程。因此,提出对催化剂的不同区域分别讨论,根据催化剂内CO含量的变化将两种不同的动力学方程分别应用在催化剂的不同区域。计算后发现采用两种动力学控制下催化剂内甲烷化反应的平均反应速率加快,反应进行的程度变大,更加接近实际过程,提高了计算的精确性。

关键词: 甲烷化, 计算流体动力学, 催化剂, 优化设计, 扩散

Abstract:

The simulation of methanation process is studied by CFD, and makes reasonable improvement to the model. The three-dimensional model of methanation reaction on the plum-shaped catalyst was established and the validity of the model was verified. Due to strong diffusion limitations the CO concentration of catalyst particles has great difference between the internal and external. Inside the catalyst, reaction conditions are changed to be a high H/C value. The diffusion rate of H2 is larger than CO. A single kinetics can't describe the reaction accurately. The catalyst domain is divided into two parts according to the variety of CO concentration in catalyst, and different kinetics is applied into the corresponding domain. Under the control of two kinetics, the average reaction rate of methanation has been accelerated, which is closer to the actual process and show that the new model is more accurate.

Key words: methanation, computational fluid dynamics, catalyst, optimal design, diffusion

中图分类号: 

  • TQ021.4

[1] 崔晓曦, 曹会博, 孟凡会, 等. 合成气甲烷化热力学计算分析[J]. 天然气化工, 2012, 37(5):15-19. CUI X X, CAO H B, MENG F H, et al. Thermodynamic analysis for methanation of syngas[J]. Natural Gas Chemical Industry, 2012, 37(5):15-19.
[2] KOPYSCINSKI J, SCHILDHAUER T J, BIOLLAZ S M A. Production of synthetic natural gas (SNG) from coal and dry biomass-a technology review from 1950 to 2009[J]. Fuel, 2010, 89(8):1763-1783.
[3] 朱瑞春, 公维恒, 范少锋.煤制天然气工艺技术研究[J]. 洁净煤技术, 2011, 17(6):81-85. ZHU R C, GONG W H, FAN S F. Research on technology of synthetic natural gas from coal[J]. Clean Coal Technology, 2011, 17(6):81-85.
[4] 胡大成, 高加俭, 贾春苗. 甲烷化催化剂及反应机理的研究进展[J]. 过程工程学报, 2011, 11(5):880-893. HU D C, GAO J J, JIA C M. Research advances in methanation catalysts and their catalytic mechanisms[J]. The Chinese Journal of Process Engineering, 2011, 11(5):880-893.
[5] ROSTRUP J R, PEDERSEN K, SEHESTED J. High temperature methanation:sintering and structure sensitivity[J]. Applied Catalysis A General, 2007, 330(40):134-138.
[6] GAO J, LIU Q, GU F, et al. Recent advances in methanation catalysts for the production of synthetic natural gas[J]. RSC Advances, 2015, 5(29):22759-22776.
[7] KAGYRMANOVA A P, ZOLOTARSKⅡ I A, SMIRNOV E I, et al. Optimum dimensions of shaped steam reforming catalyst[J]. Chemical Engineering Journal, 2007, 134(1):228-234.
[8] NGUYEN T T M, WISSING L, SKIØTH R M S. High temperature methanation:catalyst consideration[J]. Catalysis Today, 2013, 215:233-238.
[9] 樊蓉蓉, 甘霖, 朱炳辰. 异形多通孔催化剂工程研究(Ⅰ):12孔及24孔当量直径测定[J]. 化工学报, 2001, 52(2):170-172. FAN R R, GAN L, ZHU B C. Engineering research of irregular shape catalyst with through-hole(Ⅰ):Determination of equivalent diameters of pellets with 12 and 24 through-holes[J]. Journal of Chemical Industry and Engineering (China), 2001, 52(2):170-172.
[10] MARIANI N J, KEEGAN S D, MARINEZ O M, et al. A onedimensional equivalent model to evaluate overall reaction rates in catalytic pellets[J]. Chemical Engineering Research & Design, 2003, 81(8):1033-1042.
[11] PEDEMARA M N, PINA J, BORIO D O, et al. Use of a heterogeneous two-dimensional model to improve the primary steam reformer performance[J]. Chemical Engineering Journal, 2003, 94(1):29-40.
[12] FRIAS F A, TUDELA I, LOUISNARD O, et al. Optimized design of an electrochemical filter-press reactor using CFD methods[J]. Chemical Engineering Journal, 2011, 169:270-281.
[13] EKAMBARA K, NANDAKUMAR K, JOSHI J B. CFD simulation of bubble column reactor using population balance[J]. Industrial & Engineering Chemistry Research, 2008, 47(21):8505-8516.
[14] NIJEMEISLAND M, DIXON A G. Comparison of CFD simulations to experiment for convective heat transfer in a gas-solid fixed bed[J]. Chemical Engineering Journal, 2001, 82:231-246.
[15] BEHNAM M, DIXON A G, NIJEMEISLAND M, et al. Catalyst deactivation in 3D CFD resolved particle simulations of propane dehydrogenation[J]. Industrial Engineering Chemistry Research, 2010, 49:10641-10650.
[16] NIJEMEISLAND M, DIXON A G, STITT E H.Catalyst design by CFD for heat transfer and reaction in steam reforming[J]. Chemical Engineering Science, 2004, 59(2):5185-5191.
[17] TASKIN M E, DIXON A G, NIJEMEISLAND M, et al. CFD study of the influence of catalyst particle design on steam reforming reaction heat effects in narrow packed tubes[J]. Industrial & Engineering Chemistry Research, 2008, 47(16):5966-5975.
[18] 房鼎业. 扩散过程对气-固相催化反应速率的影响[J]. 化肥设计, 1981, (1):15-26. FANG D Y. Effect of diffusion process on gas-solid catalytic reaction rate[J]. Chemical Fertilizer Design, 1981, (1):15-26.
[19] LI H, WANG J, CHEN C, et al. Effects of macro-pores on reducing internal diffusion limitations in Fischer-Tropsch synthesis using a hierarchical cobalt catalyst[J]. RSC Advances, 2017, 7(16):9436-9445.
[20] TASKIN ME, TROUPEL A, DIXON A G, et al. Flow, transport, and reaction interactions for cylindrical particles with strongly endothermic reactions[J]. Industrial & Engineering Chemistry Research, 2010, 49(19):9026-9037.
[21] NASERI A T, PEPPLEY B A, PHARAOH J G. Computational analysis of the reacting flow in a microstructured reformer using a multiscale approach[J]. AIChE Journal, 2014, 60(6):2263-2274.
[22] KOLACZKOWSKI S T, CHAO R, AWDRY S, et al. Application of a CFD code (Fluent) to formulate models of catalytic gas phase reactions in porous catalyst pellets[J]. Chemical Engineering Research & Design, 2007, 85(11):1539-1552.
[23] TASKIN M E, DIXON A G, STITT E H, et al. Approximation of reaction heat effects in cylindrical catalyst particles with internal voids using CFD[J]. Chemical Engineering Faculty Publications, 2007, 5(1):56-72.
[24] DIXON A G, NIJEMEISLAND M, STITT E H. Systematic mesh development for 3D CFD simulation of fixed beds:single sphere study[J]. Computers & Chemical Engineering, 2011, 35(7):1171-1185.
[25] DIXON A G, NIJEMEISLAND M, STITT E H. Systematic mesh development for 3D CFD simulation of fixed beds:contact point study[J]. Computers & Chemical Engineering, 2013, 48:135-153.
[26] FOGLER H S. Elements of Chemical Reaction Engineering.[M]. 4th ed. New York:Pearson Education, 2006:813-827.
[27] KOPYSCINSKI J, SCHILDHAUER T J, VOGEL F, et al. Applying spatially resolved concentration and temperature measurements in a catalytic plate reactor for the kinetic study of CO methanation[J]. Journal of Catalysis, 2010, 271(2):262-279.
[28] 张继炎, 霍夫曼H. 在内循环式无梯度反应器中一氧化碳甲烷化反应动力学的研究[J]. 化工学报, 1986, 37(2):252-257. ZHANG J Y, HUFFMAN H. A kinetic study of carbon monoxide methanation in a gradientless reactor with internal recycle[J]. Journal of Chemical Industry and Engineering (China), 1986, 37(2):252-257.
[29] TASKIN M E, DIXON A G, STITT E H. CFD study of fluid flow and heat transfer in a fixed bed of cylinders[J]. Numerical Heat Transfer Part A:Applications, 2007, 52(3):203-218.
[30] DIXON A G, BOUDREAU J, ROCHELEAU A, et al. Flow, transport, and reaction interactions in shaped cylindrical particles for steam methane reforming[J]. Industrial & Engineering Chemistry Research, 2012, 51(49):15839-15854.

[1] 郭婉婉, 李如月, 黄军. 交联菲罗啉负载铜催化剂用于合成三甲基苯醌[J]. 化工学报, 2019, 70(3): 929-936.
[2] 李德生, 张超, 邓时海, 胡智丰, 李金龙, 刘元辉. 基于铁基质高效催化还原污水中硝酸盐氮的实验研究[J]. 化工学报, 2019, 70(3): 1065-1074.
[3] 徐奇超, 江锦波, 彭旭东, 李纪云, 王玉明. 基于遗传算法的干气密封双向槽统一模型与参数优化[J]. 化工学报, 2019, 70(3): 995-1005.
[4] 赫帅, 郭凤, 康国俊, 余剑, 任雪峰, 许光文. 络合-溶剂热法制备钯基催化剂及其催化氧化间二甲苯性能[J]. 化工学报, 2019, 70(3): 937-943.
[5] 唐铨, 郭杨龙, 詹望成, 郭耘, 王丽, 王筠松. 用于丙烷催化燃烧的PdxPty-ZSM-5/Cordierite整体式催化剂[J]. 化工学报, 2019, 70(3): 944-950.
[6] 王超, 李长明, 皇甫林, 李萍, 杨运泉, 高士秋, 余剑, 许光文. 赤泥催化剂的制备及其对模拟烟气中微量氨的脱除性能[J]. 化工学报, 2019, 70(3): 1056-1064.
[7] 李艳鹰, 李先春. 生物质活性炭负载零价铁纳米晶簇直接催化还原NO[J]. 化工学报, 2019, 70(3): 1111-1119.
[8] 杨杰, 祁江羽, 沙勇. 反应精馏隔壁塔制甲缩醛过程模拟与分析[J]. 化工学报, 2019, 70(3): 960-968.
[9] 朱顺, 郭琦, 张大伟, 杨庆春. 集成CO2高效利用的煤制乙二醇过程设计与系统分析[J]. 化工学报, 2019, 70(2): 772-779.
[10] 胡松, 李进龙, 李木金, 杨卫胜. 萃取精馏生产高纯度环氧丙烷的工艺研究[J]. 化工学报, 2019, 70(2): 670-677.
[11] 王少靖, 刘琳琳, 张磊, 都健, 吴恺艺. 集成NGL回收的新型天然气液化系统AP-XTM的概念设计与模拟分析[J]. 化工学报, 2019, 70(2): 508-515.
[12] 李挺, 贾卓泰, 张庆华, 杨超, 毛在砂. 几种单层桨搅拌槽内宏观混合特性的比较[J]. 化工学报, 2019, 70(1): 32-38.
[13] 邓伟峰, 蒋珍华, 刘少帅, 张安阔, 吴亦农. 高温区大冷量脉管制冷机优化设计与实验特性[J]. 化工学报, 2019, 70(1): 107-115.
[14] 王婵娜, 刘令, 王慧华, 屈天鹏, 田俊, 王德永, 康振辉. Co-Fe-Pd纳米粒子的可控制备及其氧还原催化性能[J]. 化工学报, 2019, 70(1): 319-326.
[15] 李凡, 许锋, 罗雄麟. 分散常规控制系统结构设计的遗传算法求解[J]. 化工学报, 2018, 69(S2): 266-273.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!