化工学报 ›› 2018, Vol. 69 ›› Issue (8): 3373-3382.doi: 10.11949/j.issn.0438-1157.20180056

• 流体力学与传递现象 • 上一篇    下一篇

气液两相并流下行通过堆叠筛板填料的压降特性

姜鹏, 王琨, 谯敏, 李俊峰, 薛云翔, 黄卫星   

  1. 四川大学化学工程学院, 四川 成都 610065
  • 收稿日期:2018-01-15 修回日期:2018-05-06 出版日期:2018-08-05 发布日期:2018-05-10
  • 通讯作者: 黄卫星 E-mail:hwx@scu.edu.cn

Pressure drop of gas-liquid two phases parallelly flowing down through a stacked sieve plate packing

JIANG Peng, WANG Kun, QIAO Min, LI Junfeng, XUE Yunxiang, HUANG Weixing   

  1. School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
  • Received:2018-01-15 Revised:2018-05-06 Online:2018-08-05 Published:2018-05-10

摘要:

堆叠筛板填料已在核电站放射性气体除气塔中得到成功应用。针对这一新型填料的应用设计,在较广泛的气液流量下,对气液并流下行通过不同规格堆叠筛板填料的阻力特性进行了系统的实验。实验填料共6种规格,孔径参数包括6、10和14 mm,不同孔径填料对应不同的孔间距、板间距,每种孔径填料具有正方形和正三角形两种筛孔分布方式。通过压降数据分析,研究了流动参数和几何参数(孔径、开孔率、布孔方式、板间距)对气液两相并流通过填料的流动行为及压降特性的影响;结合多孔板阻力系数经验公式提出了堆叠筛板填料干板阻力系数的计算模型,模型很好地反映了不同几何参数对干板阻力系数的影响,预测偏差在5%范围以内;基于均相流模型提出了堆叠筛板填料气液两相压降的预测模型,模型预测偏差在10%范围以内。研究工作对堆叠筛板填料塔的应用设计及进一步的传质动力学研究有一定参考价值。

关键词: 堆叠筛板填料, 压降预测, 阻力系数, 气液两相流, 流体动力学, 流动

Abstract:

Stacked sieve plate packing, a newly developed packing, has been successfully used in degassing column of nuclear power plant. For the purpose of engineering design, systematic experiments were carried out to investigate resistance characteristics of gas-liquid co-currents flowing down through this packing under a broad range of gas-liquid flowrate. 6 packings were used, including three hole diameters of 6 mm, 10 mm, 14 mm and their corresponding square and triangle hole distributions. Different hole diameters had different spacing between holes and plates. Measurement of pressure drop were analyzed to understand influence of flowrates and geometrical parameters, e.g., hole diameter, hole distribution, hole spacing and plate spacing, on flow behaviors and pressure drop characteristics of gas-liquid two phases parallel through the packings. Based on empirical formula of perforated plate resistance coefficient, a new correlation of resistance coefficient for single phase (gas) flowing through stacked sieve plate packing was developed. The model correctly reflected influence of all geometrical parameters in good agreement with experimental results with a deviation of less than 5%. Further, based on homogeneous flow model, a prediction model of two-phase pressure drop of gas and liquid flowing through stacked sieve plate packing was proposed. This new two phase pressure drop model had good prediction with less than 10% deviation. This work provides valuable basis not only for the design of stacked sieve plate packing column, but also for further study of mass transfer in this new packing.

Key words: stacked sieve plate packing, pressure drop, resistance coefficient, gas-liquid flow, hydrodynamics, flow

中图分类号: 

  • TQ021.1

[1] SHI W D, HUANG W X, ZHOU Y H, et al. Hydrodynamics and pressure loss of concurrent gas liquid downward flow through sieve plate packing[J]. Chemical Engineering Science, 2016, 143(Suppl. C):206-215.
[2] ANTER A M, 肖琼, 程振民, 等. 气液向上或向下并流固定床动持液量测定[J]. 化工学报, 2000, 51(4):535-539. ANTER A M, XIAO Q, CHENG Z M, et al. Liquid holdup measurements in downward flow and upward flow fixed-bed reactors[J]. Journal of Chemical Industry and Engineering(China), 2000, 51(4):535-539.
[3] 胡剑光, 刘佳特, 袁猛, 等. 新型垂直板规整填料流体力学及传质性能[J]. 化工学报, 2014, 65(1):116-122. HU J G, LIU J T, YUAN M, et al. Hydrodynamics and mass transfer characteristics of a novel vertical-sheet structured packing[J]. CIESC Journal, 2014, 65(1):116-122.
[4] 李相鹏, 陈冰冰, 高增梁. 规整填料表面液膜流动特性的数值模拟[J]. 化工学报, 2013, 64(6):1925-1933. LI X P, CHEN B B, GAO Z L. Numerical simulation on hydraulic characteristics of liquid film on structured packing surface[J]. CIESC Journal, 2013, 64(6):1925-1933.
[5] 韦佩英, 王辉, 安宇. 一种新填料-薄密筛板填料[J]. 医药工程设计, 2003, 24(1):3-4. WEI P Y, WANG H, AN Y. A new kind of packing-packing for thin sieve tray with dense holes[J]. Pharmaceutical & Engineering Design, 2003, 24(1):3-4.
[6] 贾绍义, 孙永利, 赵金铎, 等. 孔板波纹填料的结构参数对其性能的影响[J]. 化工学报, 2002, 53(4):364-368. JIA S Y, SUN Y L, ZHAO J D, et al. Influence of structural parameters of corrugated plate packing on its performances[J]. Journal of Chemical Industry and Engineering(China), 2002, 53(4):364-368.
[7] GAN G, RIFFAT S B. Pressure loss characteristics of orifice and perforated plates[J]. Experimental Thermal & Fluid Science, 1997, 14(2):160-165.
[8] HOLT G J, MAYNES D, BLOTTER J. Cavitation at sharp edge multi-hole baffle plates[C]//Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition, 2011:401-404.
[9] IDELCHIK I E, MALYAVSKAYA G R, MARTYNENKO O G, et al. Handbook of hydraulic resistance[J]. Fuel & Energy Abstracts, 1986, 16(90):169.
[10] KOLODZIE P A, MATTHEW V W. Discharge coefficients through perforated plates[J]. AIChE Journal, 2010, 3(3):305-312.
[11] MALAVASI S, MESSA G, FRATINO U, et al. On the pressure losses through perforated plates[J]. Flow Measurement & Instrumentation, 2012, 28(12):57-66.
[12] MILLER D S. Internal flow systems[J]. International Journal of Heat & Mass Transfer, 1990, 23(4):577-577.
[13] ÖZAHI E. An analysis on the pressure loss through perforated plates at moderate Reynolds numbers in turbulent flow regime[J]. Flow Measurement & Instrumentation, 2015, 43:6-13.
[14] ZHAO T, ZHANG J, MA L. A general structural design methodology for multi-hole orifices and its experimental application[J]. Journal of Mechanical Science & Technology, 2011, 25(9):2237.
[15] ALIMONTI C, FALCONE G, BELLO O. Two-phase flow characteristics in multiple orifice valves[J]. Experimental Thermal & Fluid Science, 2010, 34(8):1324-1333.
[16] KOJASOY G, LANDIS F, KWAME-MENSAH P, et al. Two-phase pressure drop in multiple thick-and thin-orifice plates[J]. Experimental Thermal & Fluid Science, 1997, 15(4):347-358.
[17] 白兆亮, 李琳. 有压输水管道孔板局部阻力相邻影响试验[J]. 水利水电科技进展, 2015, 35(2):28-31. BAI Z L, LI L. Test on local resistance adjacent influence of pressure water pipe[J]. Advances in Science and Technology of Water Resources, 2015, 35(2):28-31.
[18] 白兆亮, 李琳. 有压管道中孔板相对间距对局部阻力系数的影响及其机理研究[J]. 水电能源科学, 2015, 33(1):177-182. BAI Z L, LI L. Study on impact of relative spacing of orifice plate in pressure pipe on local resistance coefficient and impact mechanism[J]. Water Resources and Power, 2015, 33(1):177-182.
[19] 耿艳峰, 冯叔初, 郑金吾. 槽式孔板的气液两相压降倍率特性[J]. 化工学报, 2006, 57(5):1138-1142. GENG Y F, FENG S C, ZHENG J W. Two-phase multipliers characteristics of slotted orifice[J]. Journal of Chemical Industry and Engineering(China), 2006, 57(5):1138-1142.
[20] 余冬梅, 卢晓江, 李靖. 多孔孔板水力空化装置的阻力特性研究[J]. 轻工机械, 2010, 28(1):17-20. YU D M, LU X J, LI J. Research on resistance characteristics of multi-hole orifice plate in hydraulic cavitation[J]. Chemical Engineering & Machinery, 2010, 28(1):17-20.
[21] Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full(Part 2):Orifice plates:ISO 5167-2.[S]:2003.
[22] 吕宇玲, 杜胜伟, 何利民, 等. 气液两相流持液率及压降特性的试验研究[J]. 油气储运, 2006, 25(3):48-51. LÜ Y L, DU S W, HE L M, et al. Study on the characteristics parameters of gas-liquid two-phase flow[J]. Oil & Gas Storage and Transportation, 2006, 25(3):48-51.
[23] 聂晶尧, 宋宏宇, 袁向前, 等. 微通道中两相流压降与传质的研究[J]. 化学反应工程与工艺, 2007, 23(4):309-314. NIE J Y, SONG H Y, YUAN X Q, et al. Study on two-phase flow pressure drop and mass transfer in parallel microchannels[J]. Chemical Reaction Engineering and Technology, 2007, 23(4):309-314.
[24] 孙立成, 阎昌琪, 孙中宁. 小通道内两相流摩擦压降计算方法评价[J]. 核动力工程, 2010, 31(4):36-40. SUN L C, YAN C Q, SUN Z N. An evaluation of prediction methods for frictional pressure drop of two-phase flow in mini-channels[J]. Nuclear Power Engineering, 2010, 31(4):36-40.
[25] 许玉, 方贤德, 张宏刚, 等. 管内两相流摩擦压力损失计算研究进展[J]. 流体机械, 2012, 40(5):34-40. XU Y, FANG X D, ZHANG H G, et al. Research progress of frictional pressure drop calculations for two-phase flow in pipes[J]. Fluid Machinery, 2012, 40(5):34-40.
[26] 姚超, 李会雄, 薛玉卿, 等. 垂直下降管内两相流摩擦压降计算关联式评价[J]. 工程热物理学报, 2016, 37(3):545-550. YAO C, LI H X, XUE Y Q, et al. evaluation of frictional pressure drop correlations for two-phase flow in vertical downward tubes[J]. Journal of Engineering Thermophysics, 2016, 37(3):545-550.
[27] 周云龙, 窦华荣, 梁超, 等. 正方形小通道内气液两相流垂直向上流动特性[J]. 化工学报, 2008, 59(6):1377-1382. ZHOU Y L, DOU H R, LIANG C, et al. Flow characteristics of gas-liquid two-phase flow in small vertical square channel[J]. Journal of Chemical Industry and Engineering(China), 2008, 59(6):1377-1382.
[28] 郭烈锦. 两相与多相流动力学[M]. 西安:西安交通大学出版社, 2002. GUO L J. Fluid Dynamics of Two-phase and Multiphase Systems[M]. Xi'an:Xi'an Jiaotong University Press, 2002.
[29] 阎昌琪. 气液两相流[M]. 哈尔滨:哈尔滨工程大学出版社, 2010. YAN C Q. Gas-Liquid Two-phase Flow[M]. Harbin:Harbin Engineering University Press, 2010.
[30] ZHU X, YANG Z, BI Q. Experimental study on the pressure drop characteristics of steam-water two-phase flow at a low mass velocity in a four-head rifled tube[J]. Applied Thermal Engineering, 2017, 122:148-157.

[1] 施素丽, 鹿院卫, 于强, 吴玉庭. 熔盐单罐释热过程换热器取热方式优选[J]. 化工学报, 2019, 70(3): 857-864.
[2] 生丽莎, 陈振乾. 静电辅助多孔液体的制备及特性研究[J]. 化工学报, 2019, 70(3): 1163-1170.
[3] 王瀚琳, 王德强, 王凯, 骆广生. 微反应器内苯甲醚连续合成[J]. 化工学报, 2019, 70(3): 922-928.
[4] 吴晅, 李晓瑞, 马骏, 秦梦竹, 周雅慧, 李海广. 不同管口浸没方式下气泡生成行为特性[J]. 化工学报, 2019, 70(3): 901-912.
[5] 夏红桃, 邹思宇, 肖杰. 随机粗糙表面上剪切变稀流体液滴的沉积过程模拟[J]. 化工学报, 2019, 70(2): 634-645.
[6] 刘忠彦, 孙大汉, 金旭, 王天皓, 马一太. CO2管内流动沸腾换热模型评价研究[J]. 化工学报, 2019, 70(1): 56-64.
[7] 王鑫, 杨斌鑫. 耦合格子Boltzmann的聚合物结晶相场方法[J]. 化工学报, 2018, 69(S2): 193-199.
[8] 王皓显, 李剑锐, 胡海涛, 丁国良, 武春林, 陈慧, 邢占洋. 纵荡对板翅式换热器通道内液化天然气流动沸腾换热特性的影响分析[J]. 化工学报, 2018, 69(S2): 101-108.
[9] 徐肖肖, 陈龙, 肖久旻, 刘朝. 两相流在扁平T型管中压降特性的实验研究[J]. 化工学报, 2018, 69(S2): 174-179.
[10] 孙星, 徐可可, 孟华. 超临界压力正癸烷在螺旋管中传热与裂解吸热现象的数值模拟[J]. 化工学报, 2018, 69(S1): 20-25.
[11] 朱礼涛, 罗正鸿. 磁共振成像应用于多相流体动力学研究进展[J]. 化工学报, 2018, 69(9): 3765-3773.
[12] 钟英杰, 黄其, 邓凯, 赵创要, 苏艺花. 三角槽道低Reynolds数脉动流的流动特性分析[J]. 化工学报, 2018, 69(9): 3806-3813.
[13] 李晗, 蒲文灏, 杨宁, 毛衍钦, 岳晨, 张琦. 空气-石蜡直接接触换热特性实验研究[J]. 化工学报, 2018, 69(9): 3792-3798.
[14] 刘冰冰, 王明雨, 高洪涛, 张少君. 高气液密度比的传热相变复合模型[J]. 化工学报, 2018, 69(8): 3418-3427.
[15] 敬加强, 尹然, 马孝亮, 孙杰, 吴嬉. 水平管稠油掺气减阻模拟实验[J]. 化工学报, 2018, 69(8): 3398-3407.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!