化工学报 ›› 2018, Vol. 69 ›› Issue (8): 3452-3459.doi: 10.11949/j.issn.0438-1157.20180027

• 催化、动力学与反应器 • 上一篇    下一篇

Ni/ZrO2-SiO2催化剂催化乙酰丙酸加氢合成γ-戊内酯

王杰, 张因, 郭健健, 赵丽丽, 赵永祥   

  1. 山西大学化学化工学院, 精细化学品教育部工程研究中心, 山西 太原 030006
  • 收稿日期:2018-01-09 修回日期:2018-05-21
  • 通讯作者: 张因 E-mail:sxuzhy@sxu.edu.cn
  • 基金资助:

    国家自然科学基金青年科学基金项目(21303097);国家国际科技合作专项(2013DFA40460)。

γ-Valerolactone synthesis from levulinic acid hydrogenation over Ni/ZrO2-SiO2 catalyst

WANG Jie, ZHANG Yin, GUO Jianjian, ZHAO Lili, ZHAO Yongxiang   

  1. Engineering Research Center of Ministry of Education for Fine Chemicals, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, Shanxi, China
  • Received:2018-01-09 Revised:2018-05-21
  • Supported by:

    supported by the National Natural Science Foundation of China(21303097) and the International S&T Cooperation Program of China(2013DFA40460).

摘要:

分别以ZrO2、SiO2及ZrO2-SiO2复合氧化物为载体,采用等体积浸渍法制备了Ni含量为10%(质量分数)的催化剂,考察了其催化乙酰丙酸液相加氢性能。采用N2-物理吸附、NH3-TPD、H2-TPR、XRD、TEM等表征手段对催化剂进行了表征。研究结果表明,在所制备的催化剂上,乙酰丙酸先经C=O加氢生成4-羟基戊酸,后者快速脱水酯化为γ-戊内酯。Ni/ZrO2-SiO2催化剂较Ni/ZrO2与Ni/SiO2催化剂具有高的金属分散度和丰富的表面酸性中心,表现出高的C=O加氢活性以及优异的乙酰丙酸加氢合成γ-戊内酯性能。在反应温度为200℃,氢气压力4 MPa的反应条件下,乙酰丙酸的转化率达到100%,γ-戊内酯的选择性大于99.9%。

关键词: 乙酰丙酸, &gamma, -戊内酯, 催化加氢, Ni/ZrO2-SiO2

Abstract:

ZrO2、SiO2 and ZrO2-SiO2 oxide composite supported Ni catalysts with Ni content of 10%(mass) were prepared by incipient impregnation method and characterized by N2 physical adsorption, NH3-TPD, H2-TPR, XRD, TEM. The catalysts were evaluated for liquid phase hydrogenation of levulinic acid. The results showed that levulinic acid was first hydrogenated to 4-hydroxy valeric acid via C=O hydrogenation and γ-valerolactone was then produced by immediate esterification of 4-hydroxy valeric acid. Compared to Ni/ZrO2 and Ni/SiO2 catalysts, Ni/ZrO2-SiO2 catalyst exhibited highest dispersion of metallic Ni and most surface acid sites. As a result, the Ni/ZrO2-SiO2 catalyst demonstrated highest activity for C=O hydrogenation and superior performance for synthesis of γ-valerolactone via levulinic acid hydrogenation. 100% levulinic acid conversion and over 99.9% γ-valerolactone selectivity were achieved under reaction temperature of 200℃ and hydrogen pressure of 4 MPa.

Key words: levulinic acid, γ-valerolactone, catalytic hydrogenation, Ni/ZrO2-SiO2

中图分类号: 

  • O643.36

[1] ALONSO D M, WETTSTEIN S G, DUMESIC J A. Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass[J]. Green Chemistry, 2013, 15(3):584-595.
[2] HORVATH I T, MEHDI H, FABOS V, et al. Valerolactone-a sustainable liquid for energy and carbon-based chemicals[J]. Green Chemistry, 2008, 10(2):238-242.
[3] WEINGARTEN R, CONNER W C, HUBER G W. Production of levulinic acid from cellulose by hydrothermal decomposition combined with aqueous phase dehydration with a solid acid catalyst[J]. Energy & Environmental Science, 2012, 5(6):7559-7574.
[4] ABDELRAHMAN O A, HEYDEN A, BOND J Q. Analysis of kinetics and reaction pathways in the aqueous-phase hydrogenation of levulinic acid to form γ-valerolactone over Ru/C[J]. ACS Catalysis, 2014, 4(4):1171-1181.
[5] WRIGHT W R, PALKOVITS R. Development of heterogeneous catalysts for the conversion of levulinic acid to gamma-valerolactone[J]. ChemSusChem, 2012, 5(9):1657-1667.
[6] MANZER L E. Catalytic synthesis of a-methylene-g-valerolactone:a biomass-derived acrylic monomer[J]. Applied Catalysis A:General, 2004, 272:249-256.
[7] UPARE P P, LEE J M, HWANG D W, et al. Selective hydrogenation of levulinic acid to g-valerolactone over carbon-supported noble metal catalysts[J]. Journal of Industrial and Engineering Chemistry, 2011, 17(2):287-292.
[8] AL-SHAAL M G, WRIGHT W R H, PALKOVITS R. Exploring the ruthenium catalysed synthesis of g-valerolactone in alcohols and utilisation of mild solvent-free reaction conditions[J]. Green Chemistry, 2012, 14(5):1260-1263.
[9] DU X L, HE L, ZHAO S, et al. Hydrogen-independent reductive transformation of carbohydrate biomass into gamma-valerolactone and pyrrolidone derivatives with supported gold catalysts[J]. Angew Chem. Int. Ed. Eng., 2011, 50(34):7815-7819.
[10] YAN K, LAFLEUR T, WU G, et al. Highly selective production of value-added g-valerolactone from biomass-derived levulinic acid using the robust Pd nanoparticles[J]. Applied Catalysis A:General, 2013, 468:52-58.
[11] SHIMIZU K I, KANNO S, KON K. Hydrogenation of levulinic acid to g-valerolactone by Ni and MoOx co-loaded carbon catalysts[J]. Green Chemistry, 2014, 16(8):3899-3903.
[12] JONES D R, IQBAL S, ISHIKAWA S, et al. The conversion of levulinic acid into g-valerolactone using Cu-ZrO2catalysts[J]. Catal. Sci. Technol., 2016, 6(15):6022-6030.
[13] SUN D, OHKUBO A, ASAMI K, et al. Vapor-phase hydrogenation of levulinic acid and methyl levulinate to g-valerolactone over non-noble metal-based catalysts[J]. Molecular Catalysis, 2017, 437:105-113.
[14] OBREG N I, CORRO E, IZQUIERDO U, et al. Levulinic acid hydrogenolysis on Al2O3-based Ni-Cu bimetallic catalysts[J]. Chinese Journal of Catalysis, 2014, 35(5):656-662.
[15] CHRISTIAN R V, HORACE D B, HIXON R M. Derivatives of g-valerolactone, 1, 4-pentanedioland1, 4-di-(b-cyanoethoxy)-pentane[J]. Journal of the American Chemical Society, 1947, 69:1961-1963.
[16] HENGST K, SCHUBERT M, CARVALHO H W P, et al. Synthesis of g-valerolactone by hydrogenation of levulinic acid over supported nickel catalysts[J]. Applied Catalysis A:General, 2015, 502:18-26.
[17] MOHAN V, VENKATESHWARLU V, PRAMOD C V, et al. Vapour phase hydrocyclisation of levulinic acid to g-valerolactone over supported Ni catalysts[J]. Catal. Sci. Technol., 2014, 4(5):1253-1259.
[18] MOHAN V, RAGHAVENDRA C, PRAMOD C V, et al. Ni/H-ZSM-5 as a promising catalyst for vapour phase hydrogenation of levulinic acid at atmospheric pressure[J]. RSC Advances, 2014, 4(19):9660-9668.
[19] HENGNE A M, RODE C V. Cu-ZrO2 nanocomposite catalyst for selective hydrogenation of levulinic acid and its ester to g-valerolactone[J]. Green Chemistry, 2012, 14(4):1064-1072.
[20] GAO C G, ZHAO Y X, LIU D S. Liquid phase hydrogenation of maleic anhydride over nickel catalyst supported on ZrO2-SiO2 composite aerogels[J]. Catalysis Letters, 2007, 118(1/2):50-54.
[21] ZHANG Y, PAN L, GAO C, et al. Synthesis of ZrO2-SiO2 mixed oxide by alcohol-aqueous heating method[J]. Journal of Sol-Gel Science and Technology, 2011, 58(2):572-579.
[22] MILLER J B, RANKIN S E, KO E I. Strategies in controlling the homogeneity of zirconia-silica aerogels:effect of preparation on textural and catalytic properties[J]. Journal of Catalysis, 1994, 148(2):673-682.
[23] ANDERSON J, FERGUSSON C, RODRIGUEZRAMOS I, et al. Influence of Si/Zr ratio on the formation of surface acidity in silica-zirconia aerogels[J]. Journal of Catalysis, 2000, 192(2):344-354.
[24] MEYER C I, REGENHARDT S A, BERTONE M E, et al. Gas-phase maleic anhydride hydrogenation over Ni/SiO2-Al2O3 catalysts:effect of metal loading[J]. Catalysis Letters, 2013, 143(10):1067-1073.
[25] 刘迎新, 陈吉祥, 张继炎. Ni/SiO2催化剂上间二硝基苯液相加氢制间苯二胺[J]. 催化学报, 2003, 24(3):224-228. LIU Y X, CHEN J X, ZHANG J Y. Liquid-phase hydrogenation of m-dinitrobenzene to m-phenylenediamine over silica-supported nickel catalyst[J]. Chinese Journal of Catalysis, 2003, 24(3):224-228.
[26] SEO J G, YOUN M H, SONG I K. Effect of SiO2-ZrO2 supports prepared by a grafting method on hydrogen production by steam reforming of liquefied natural gas over Ni/SiO2-ZrO2 catalysts[J]. Journal of Power Sources, 2007, 168(1):251-257.
[27] JING Q, ZHENG X. Combined catalytic partial oxidation and CO2 reforming of methane over ZrO2-modified Ni/SiO2 catalysts using fluidized-bed reactor[J]. Energy, 2006, 31(12):2184-2192.
[28] AGUILAR D H, TORRES-GONZALEZ L C, TORRES-MARTINEZ L M, et al. A study of the crystallization of ZrO2 in the sol-gel system:ZrO2-SiO2[J]. Journal of Solid State Chemistry, 2001, 158(2):349-357.
[29] SUDHAKAR M, KUMAR V V, NARESH G, et al. Vapor phase hydrogenation of aqueous levulinic acid over hydroxyapatite supported metal (M=Pd, Pt, Ru, Cu, Ni) catalysts[J]. Applied Catalysis B:Environmental, 2016, 180:113-120.
[30] GALLETTI A M R, ANTONETTI C, DE LUISE V, et al. A sustainable process for the production of g-valerolactone by hydrogenation of biomass-derived levulinic acid[J]. Green Chemistry, 2012, 14(3):688-694.

[1] 吕喜蕾, 阮厚航, 陈皓, 吕秀阳. 近临界乙醇中Zr-SBA-15催化糠醛一步法制备乙酰丙酸乙酯[J]. 化工学报, 2018, 69(6): 2488-2495.
[2] 李晨阳, 冯淼, 崔海峰, 曹贵平, 吕慧, 陈荣起. 蜂窝陶瓷骨架微结构修饰调控制备Pd/CNTs@CHC催化剂用于PS加氢[J]. 化工学报, 2017, 68(7): 2746-2754.
[3] 梁二艳, 张因, 赵丽丽, 徐亚琳, 赵永祥. 甲醇热制备四方相ZrO2及其负载镍催化剂的顺酐加氢性能[J]. 化工学报, 2017, 68(6): 2352-2358.
[4] 常春, 白净, 安冉, 邓琳, 戚小各, 徐艳丽. 硫酸铁催化生物基糠醇制取乙酰丙酸丁酯[J]. 化工学报, 2017, 68(6): 2368-2375.
[5] 安冉, 孔鹏飞, 徐桂转, 常春, 白净, 方书起. 脱铝超稳Y沸石负载Cu催化纤维素醇解合成乙酰丙酸乙酯[J]. 化工学报, 2016, 67(11): 4643-4651.
[6] 常翠荣, 王华, 韩金玉. 固体酸表面B酸和L酸与果糖转化制乳酸甲酯产物分布[J]. 化工学报, 2015, 66(9): 3428-3436.
[7] 张阳阳, 罗璇, 庄绪丽, 仝新利. 混合酸催化葡萄糖选择性转化合成乙酰丙酸甲酯[J]. 化工学报, 2015, 66(9): 3490-3495.
[8] 姜楠1,谢楠1,齐崴1,2,3,苏荣欣1,2,3,何志敏1,2,3. 硫酸催化葡萄糖制备乙酰丙酸的过程强化[J]. 化工进展, 2014, 33(11): 2888-2893.
[9] 陈伦刚, 刘勇, 定明月, 张兴华, 李宇萍, 张琦, 王铁军, 马隆龙. Ru催化加氢选择性脱除F-T合成水相中的含氧化合物[J]. 化工学报, 2014, 65(11): 4347-4355.
[10] 孙梅娟1,黄晓典1,关清卿1,张春云2,柴欣生2,田森林1,宁平1,谷俊杰1. 超临界乙醇体系中苯酚催化加氢的降解规律[J]. 化工进展, 2014, 33(07): 1902-1907.
[11] 高学艺,武彦伟,王克冰. 沙柳酸催化水解制备乙酰丙酸及分离提纯[J]. 化工进展, 2014, 33(01): 242-246.
[12] 孙洪志,王 倩,宋名秀,阿不都拉江?那斯尔,王付燕,朱维群. CO2化学利用的研究进展[J]. 化工进展, 2013, 32(07): 1666-1672.
[13] 刘 焘,李利军,黄文艺,刘 柳. 固体超强酸催化剂SO42?/高岭土制备乙酰丙酸[J]. 化工进展, 2013, 32(06): 1300-1306.
[14] 邓 理1,廖 兵1,郭庆祥. 纤维素选择性催化转化为重要平台化合物的研究进展[J]. 化工进展, 2013, 32(02): 245-254.
[15] 曾珊珊, 林鹿, 刘娣, 彭林才. 磷钨酸盐催化转化葡萄糖合成乙酰丙酸[J]. 化工学报, 2012, 63(12): 3875-3881.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!