化工学报 ›› 2018, Vol. 69 ›› Issue (5): 2208-2216.doi: 10.11949/j.issn.0438-1157.20180013

• 能源和环境工程 • 上一篇    下一篇

宁东红石湾煤大分子模型构建及量子化学计算

李壮楣1,2, 王艳美1,2, 李平1,2, 李和平1,2, 白红存1,2, 郭庆杰1,2   

  1. 1. 省部共建煤炭高效利用与绿色化工国家重点实验室(宁夏大学), 宁夏 银川 750021;
    2. 宁夏大学化学化工学院, 宁夏 银川 750021
  • 收稿日期:2018-01-05 修回日期:2018-01-10
  • 通讯作者: 白红存 E-mail:Hongcunbai@nxu.edu.cn
  • 基金资助:

    宁夏自然科学基金面上项目(NZ17008);宁夏科技厅对外交流合作项目(2015年);宁夏高等学校一流学科建设项目(化学工程与技术学科,NXYLXK2017A04);宁夏大学研究生创新项目(GIP2017029)。

Macromolecular model construction and quantum chemical calculation of Ningdong Hongshiwan coal

LI Zhuangmei1,2, WANG Yanmei1,2, LI Ping1,2, LI Heping1,2, BAI Hongcun1,2, GUO Qingjie1,2   

  1. 1. State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, Ningxia, China;
    2. College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, Ningxia, China
  • Received:2018-01-05 Revised:2018-01-10
  • Supported by:

    supported by the Natural Science Foundation of Ningxia (NZ17008), the External Cooperation Program of Science and Technology Department of Ningxia (2015), the National Academic Subjects Construction Project of Ningxia (Chemical Engineering and Technology, NXYLXK2017A04) and the Innovation Program for Graduate Students of Ningxia University (GIP2017029).

摘要:

使用工业分析、元素分析、固体核磁(13C NMR)、X射线光电子能谱(XPS)、傅里叶变换红外光谱(FT-IR)对宁东红石湾(HSW)煤样进行表征,获得煤样中元素赋存的种类、价态、化学键环境等物质微观结构的关键参数。结果表明HSW煤结构以芳香族为主,占75.96%,桥接芳碳与周碳比为0.315,可知其结构中以萘为主,苯和蒽为辅。氧原子主要以醚氧基(C—O)、羰基(C=O)和羧基(—COO)的形式存在,其中C—O占53.57%。氮原子以吡啶和吡咯的形式存在。苯环的连接方式以三、四取代为主,分别占47.77%、32.97%,脂肪族中环烷烃或脂肪烃—CH3占优势。确定HSW煤的分子式为C221H148O28N2,分子量为3142.32。在此基础上结合计算机辅助实现了二维和三维大分子模型构筑。应用量子化学计算对HSW煤大分子模型进行了优化及核磁共振、红外光谱模拟,验证了所建模型的合理性。最终实现了HSW煤的微观分子结构的实验与量子化学描述。

关键词: 煤, 模型, 计算化学, 结构优化, 分子模拟, 光谱模拟

Abstract:

Hongshiwan (HSW) coal from Ningdong China was characterized to determine key microstructural parameters of materials, such as elements, valence and chemical bonding, with proximate and ultimate analyses, solid state 13C nuclear magnetic resonance (13C NMR), X ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). The results revealed that main structure of HSW coal was 75.96%(mass) aromatic skeleton and 0.315 ratio of aromatic bridge carbon to aromatic peripheral carbon, indicating more naphthalene than benzene and anthracene in coal. Oxygen predominantly presented in the form of ether (C-O), carbonyl (C=O) and carboxyl (-COO), which C-O was accounted for 53.57%. Nitrogen presented in the form of pyridine and pyrrole. Tri-and tetra-substituents were mainly located on benzene ring at 47.77% and 32.97%, respectively. Methyl (-CH3) group was predominant in cyclic and aliphatic hydrocarbons. Thus, coal molecular formula was defined as C221H148O28N2 with molecular weight of 3142.32. Based on these results, macromolecular 2D and 3D model of HSW coal was built with computer-aided modelling. The model was optimized and further verified by FT-IR and 13C NMR spectra simulation by quantum chemical calculations. Therefore, molecular microstructures of HSW coal have been depicted from both experimental and quantum chemical approaches.

Key words: coal, model, computational chemistry, structural optimization, molecular simulation, spectral simulation

中图分类号: 

  • TQ530

[1] HEEK K H V. Progress of coal science in the 20th century[J]. Fuel, 2000, 79(1):1-26.
[2] MATHEWS J P, CHAFFEE A L. The molecular representations of coal-a review[J]. Fuel, 2012, 96(1):1-14.
[3] 王宝俊, 张玉贵, 谢克昌. 量子化学计算在煤的结构与反应性研究中的应用[J]. 化工学报, 2003, 54(4):477-488. WANG B J, ZHANG Y G, XIE K C. Application of quantum chemistry calculation to investigation on coal structure and reactivity[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(4):447-488.
[4] 刘振宇. 煤化学的前沿与挑战:结构与反应[J]. 中国科学:化学, 2014, 44(9):1431-1438. LIU Z Y. Advancement in coal chemistry:structure and reactivity[J]. Scientia Sinica Chimica, 2014, 44(9):1431-1435.
[5] GIVEN P H. The distribution of hydrogen in coals and its relation to coal structure[J]. Fuel, 1960, 39(2):147-153.
[6] WENDER I. Catalytic synthesis of chemicals from coal[J]. Catalysis Reviews-Science and Engineering, 1976, 14(1):97-129.
[7] SHINE J H. From coal to single-stage and two-stage products:a reactive model of coal structure[J]. Fuel, 1984, 63(9):1187-1196.
[8] XIANG J H, ZENG F G, LIANG H Z, et al. Model construction of the macromolecular structure of Yanzhou coal and its molecular simulation[J]. Journal of Fuel Chemistry & Technology, 2011, 39(7):481-488.
[9] 蔺华林, 李克健, 章序文. 上湾煤及其惰质组富集物的结构表征与模型构建[J]. 燃料化学学报, 2013, 41(6):641-648. LIN H L, LI K J, ZHANG X W. Structure characterization and model construction of Shangwan coal and it's inertinite concentrated[J]. Journal of Fuel Chemistry & Technology, 2013, 41(6):641-648.
[10] LI W, ZHU Y M, CHEN S B, et al. Research on the structural characteristics of vitrinite in different coal ranks[J]. Fuel, 2013, 107(9):647-652.
[11] YAN G C, ZHANG Z Q, YAN K F. Reactive molecular dynamics simulations of the initial stage of brown coal oxidation at high temperatures[J]. Molecular Physics, 2013, 111(1):147-156.
[12] BHOI S, BANERJEE T, MOHANTY K. Molecular dynamic simulation of spontaneous combustion and pyrolysis of brown coal using ReaxFF[J]. Fuel, 2014, 136(6):326-333.
[13] ZHAN J H, WU R C, LIU X X, et al. Preliminary understanding of initial reaction process for subbituminous coal pyrolysis with molecular dynamics simulation[J]. Fuel, 2014, 134(9):283-292.
[14] WANG H J, FENG Y H, ZHANG X X, et al. Study of coal hydropyrolysis and desulfurization by ReaxFF molecular dynamics simulation[J]. Fuel, 2015, 145:241-248.
[15] 李军, 冯杰, 李文英. 神府东胜煤镜质组和惰质组的热化学反应差异[J]. 物理化学学报, 2009,25(7):1311-1319. LI J, FENG J, LI W Y. Thermochemical reaction representation of Shenfu Dongshen inertinite and vitrinite[J]. Acta Physico-Chimica Sinica, 2009, 25(7):1311-1319.
[16] 相建华, 曾凡桂, 梁虎珍, 等. 兖州煤大分子结构模型构建及其分子模拟[J]. 燃料化学学报, 2011, 39(7):481-488. XIANG J H, ZENG F G, LIANG H Z, et al. Model construction of the macromolecular structure of Yanzhou coal and its molecular simulation[J]. Journal of Fuel Chemistry & Technology, 2011, 39(7):481-488.
[17] 相建华, 曾凡桂, 李彬, 等. 成庄无烟煤大分子结构模型及其分子模拟[J]. 燃料化学学报, 2013, 41(4):391-399. XIANG J H, ZENG F G, LI B, et al. Construction of macromolecular structural model of anthracite from Chengzhuang coal mine and its molecular simulation[J]. Journal of Fuel Chemistry & Technology, 2013, 41(4):391-399.
[18] JIA J B, WANG Y, LI F H, et al. IR spectrum simulation of molecular structure model of Shendong coal vitrinite by using quantum chemistry method[J]. Spectroscopy & Spectral Analysis, 2014, 34(1):47-51.
[19] WANG J P, LI G Y, GUO R, et al. Theoretical and experimental insight into coal structure:establishing a chemical model for Yuzhou lignite[J]. Energy & Fuels, 2017, 31(1):124-132.
[20] 石志祥, 李彦恒, 段飘飘, 等. 宁东煤田中部2号煤煤相特征[J]. 煤炭与化工, 2013, 36(12):18-20. SHI Z X, LI Y H, DUAN P P, et al. Coal facies characteristics of the No.2 coal seam from Ningdong coalfield central[J]. Coal & Chemical Industry, 2013, 36(12):18-20.
[21] 潘强, 杨红波, 任淑荣. 宁东矿区煤质与气化技术的匹配性研究[J]. 洁净煤技术, 2013, 19(2):36-38. PAN Q, YANG H B, REN S R. Adaptability of coal gasification technologies to raw coal in Shendong mining area[J]. Clean Coal Technology, 2013, 19(2):36-38.
[22] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 09[CP]. Wallingford CT:Gaussian Inc., 2009.
[23] ZHAO Y, TRUHLAR D G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements:two new functionals and systematic testing of four M06-class functionals and 12 other functionals[J]. Theor. Chem. Acc., 2008, 120:215-241.
[24] ReaxFF 2016[CP]. SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands.
[25] CAO X, CHAPPELL M A, SCHIMMELMANN A, et al. Chemical structure changes in kerogen from bituminous coal in response to dike intrusions as investigated by advanced solid-state 13C NMR spectroscopy[J]. International Journal of Coal Geology, 2013, 108:53-64.
[26] KOZLOWSKI M. XPS study of reductively and non-reductively modified coals[J]. Fuel, 2004, 83(3):259-265.
[27] ZHANG Z Q, KANG Q N, WEI S, et al. Large scale molecular model construction of Xishan bituminous coal[J]. Energy & Fuels, 2017, 31:1310-1317.
[28] MATHEWS J P, HATCHER P G, SCARONI A W. Proposed model structures for upper freeport and Lewiston-Stockton vitrinites[J]. Energy & Fuels, 2001, 15(4):863-873.
[29] WU D, LIU G J, SUN R Y, et al. Investigation of structural characteristics of thermally metamorphosed coal by FTIR spectroscopy and X-ray diffraction[J]. Energy & Fuels, 2013, 27(10):5823-5830.
[30] BANDOPADHYAY A K. Determination of quartz content for Indian coals using an FTIR technique[J]. International Journal of Coal Geology, 2010, 81(1):73-78.
[31] YANG W K. Thermo-degradation mechanism and hydrocarbon productivity of humic coal[J]. Oil Gas Geol., 1987, 8(1):26-37.
[32] SHI K Y, GUI X H, TAO X X, et al. Macromolecular structural unit construction of Fushun nitric-acid-oxidized coal[J]. Energy & Fuels, 2015, 29(6):3566-3572.
[33] XIANG J H, ZENG F G, LI B, et al. Construction of macromolecular structural model of anthracite from Chengzhuang coal mine and its molecular simulation[J]. Journal of Fuel Chemistry & Technology, 2013, 41(4):391-400.
[34] VANDENBROUCKE M, LARGEAU C. Kerogen origin, evolution and structure[J]. Organic Geochemistry, 2007, 38(5):719-833.
[35] CHENOWETH K, VAN DUIN A C. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation[J]. Journal of Physical Chemistry A, 2008, 112(5):1040-1053.
[36] CASTRO-MARCANO F, KAMAT A M, RUSSO M F, et al. Combustion of an Illinois No. 6 coal char simulated using an atomistic char representation and the ReaxFF reactive force field[J]. Combustion & Flame, 2012, 159(3):1272-1285.
[37] WOLINSKI K, HAACKE R, HINTON J F, et al. Methods for parallel computation of SCF NMR chemical shifts by GIAO method:efficient integral calculation, multi-Fock algorithm, and pseudodiagonalization[J]. Journal of Computational Chemistry, 1997, 18(6):816-825.

[1] 李晓航, 刘芸, 苏银皎, 滕阳, 关彦军, 张锴. 煤粉炉和循环流化床锅炉飞灰特性对其汞吸附能力的影响[J]. 化工学报, 2019, 70(3): 1075-1082.
[2] 田涛, 刘冰, 石梅生, 安亚雄, 马军, 张彦军, 徐新喜, 张东辉. 双塔微型变压吸附制氧机实验和模拟[J]. 化工学报, 2019, 70(3): 969-978.
[3] 王磊, 方桂英, 阳庆元. 金属-有机骨架材料CO2捕获性能的大规模计算筛选[J]. 化工学报, 2019, 70(3): 1135-1143.
[4] 王志甄, 邹志云. 基于神经网络的pH中和过程非线性预测控制[J]. 化工学报, 2019, 70(2): 678-686.
[5] 梁馨元, 张磊, 刘琳琳, 都健. 基于分子动力学的橡胶聚合物计算机辅助设计方法[J]. 化工学报, 2019, 70(2): 525-532.
[6] 张壮, 邓春, 孙海兰, 冯霄. 除盐水系统建模与物料衡算分析[J]. 化工学报, 2019, 70(2): 646-652.
[7] 朱顺, 郭琦, 张大伟, 杨庆春. 集成CO2高效利用的煤制乙二醇过程设计与系统分析[J]. 化工学报, 2019, 70(2): 772-779.
[8] 叶贞成, 周换兰, 饶德宝. 乙炔加氢反应过程混合建模与优化[J]. 化工学报, 2019, 70(2): 496-507.
[9] 王沈晗, 康仑巍, 张冰剑, 陈清林, 潘明, 何畅. 反渗透和压力延迟渗透耦合脱盐系统的能效优化研究[J]. 化工学报, 2019, 70(2): 617-624.
[10] 吉文鹏, 杨慧中. 基于改进扩张搜索聚类算法的多流形软测量建模[J]. 化工学报, 2019, 70(2): 723-729.
[11] 顾炳斌, 熊伟丽. 基于多块信息提取的PCA故障诊断方法[J]. 化工学报, 2019, 70(2): 736-749.
[12] 穆瑞, 乐高杨, 杨慧中. 基于O3/UV法在线COD检测的气体溶解量估计方法[J]. 化工学报, 2019, 70(2): 730-735.
[13] 耿志强, 景邵星, 白菊, 王仲凯, 朱群雄, 韩永明. 基于MWSPCA-CBR的智能预警方法研究及其在石化工业中的应用[J]. 化工学报, 2019, 70(2): 572-580.
[14] 薛永飞, 王雅琳, 孙备, 李钱钟, 孙家舟. 基于改进状态转移算法的串级平推流反应器动力学参数估计[J]. 化工学报, 2019, 70(2): 607-616.
[15] 鲁春燕, 李炜. 基于深度置信网络的炼化空压机故障诊断方法[J]. 化工学报, 2019, 70(2): 757-763.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!