化工学报 ›› 2018, Vol. 69 ›› Issue (7): 2964-2971.doi: 10.11949/j.issn.0438-1157.20171572

• 流体力学与传递现象 • 上一篇    下一篇

基于聚类方法的运动气泡声发射信号分析

王鑫, 李晓磊, 李美慧, 桑勋源, 汪太阳   

  1. 中国石油大学(华东)储运系, 山东省油气储运安全省级重点实验室, 山东 青岛 266580
  • 收稿日期:2017-11-27 修回日期:2018-05-02
  • 通讯作者: 王鑫 E-mail:wangxin@upc.edu.cn
  • 基金资助:

    国家自然科学基金项目(51376197)。

Analyze acoustic emission signals from moving bubbles by clustering method

WANG Xin, LI Xiaolei, LI Meihui, SANG Xunyuan, WANG Taiyang   

  1. Provincial Key Laboratory of Oil and Gas Storage and Transportation, College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao 266580, Shandong, China
  • Received:2017-11-27 Revised:2018-05-02
  • Supported by:

    supported by the National Natural Science Foundation of China (51376197).

摘要:

利用自行开发的采集处理程序采集3 mm喷嘴释放的连续气泡上升阶段的声发射信号,提取声信号波包并计算声信号参数。基于k-均值聚类分析方法对孔口气速1.42 m/s时的声信号波包进行分类处理,分析各分类声信号参数统计规律。通过快速傅里叶变换和小波分析方法分析各分类声信号的时频特征,结合气泡运动图像对声信号进行有效识别,研究了多个气速下的分类规律。结果表明,基于k-均值聚类分析的时频分析方法得到的各分类声信号具有一定的相似度,结合高速摄像技术,可以有效分析气泡上升运动声信号,识别气泡振荡、破碎、聚并等运动形态。

关键词: 气泡, 气液两相流, 测量, 气泡动力学, 声发射

Abstract:

A real time acquisition and processing program was developed to record acoustic emission (AE) signals, to extract AE wave packets, and to calculate AE parameters of continuous bubbles in their rising stages after released from a 3-mm-diametered nozzle. AE signal wave packets of 1.42 m/s gas velocity at orifice was classified by kmeans clustering analysis method. For each category, statistical characteristics of AE signal parameters was analyzed and time/frequency domains of AE signals were analyzed by fast Fourier transform and wavelet transform method. Identification of AE signals was effectively achieved with assistance of moving bubble images. Signal classification capability were further studied under different gas velocities. The results show that AE signals of all categories have somewhat similarity after processed by time frequency analysis and k-means clustering method, AE signals of moving bubbles in their rising stages can be efficiently studied in combination with high-speed image-capturing technique, and flow patterns of moving bubbles can be identified, including bubble oscillation, breakup, coalescence and so on.

Key words: bubble, gas-liquid two-phase flow, measure, bubble dynamics, acoustic emission

中图分类号: 

  • O359+.1

[1] 耿荣生, 沈功田, 刘时风. 声发射信号处理和分析技术[J]. 无损检测, 2002, 24(1):23-28. GENG R S, SHEN G T, LIU S F. An overview on the development of acoustic emission signal processing and analysis technique[J]. Nonde Structive Testing, 2002, 24(1):23-28.
[2] GROSSE C U, LINZER L M. Signal-based ae analysis[M]//NARAYANAN T S N S. Acoustic Emission Testing. Berlin Heidelberg:Springer, 2008:53-99.
[3] SHUIB H. An experimental investigation into the correlation between acoustic emission (ae) and bubble dynamics[D]. Cranfield:Cranfield University, 2011.
[4] 王鑫, 李美慧, 李晓磊, 等. 喷嘴释放单气泡的声发射特性[J]. 化工学报, 2017, 68(5):1794-1802. WANG X, LI M H, LI X L, et al. Acoustic emission characteristics of single nozzled bubble[J]. CIESC Journal, 2017, 68(5):1794-1802.
[5] MINNAERTSD M. On musical air-bubbles and the sounds of running water[J]. Philosophical Magazine, 1933, 16(104):235-248.
[6] 陈玉华, 刘时风, 耿荣生, 等. 声发射信号的谱分析和相关分析[J]. 无损检测, 2002, 24(9):395-399. CHEN Y H, LIU S F, GENG R S, et al. Spectral and correlation analysis of acoustic emission signals[J]. Nondestructive Testing, 2002, 24(9):395-399.
[7] 张平, 施克仁, 耿荣生, 等. 小波变换在声发射检测中的应用[J]. 无损检测, 2002, 24(10):436-439. ZHANG P, SHI K R, GENG R S, et al. Application of wavelet transform to acoustic emission testing[J]. Nondestructive Testing, 2002, 24(10):436-439.
[8] 黄春燕, 蔡小舒, 苏明旭. 基于小波多尺度分解的液固体系声发射信号特征分析[J]. 高校化学工程学报, 2014, 28(2):390-395. HUANG C Y, CAI X S, SU M X, et al. Characteristics of acoustic emission signals in a liquid-solid two-phase system with wavelet multiscale analysis[J]. Journal of Chemical Engineering of Chinese Universities, 2014, 28(2):390-395.
[9] 李帅永, 王鹏飞, 严冬, 等. 气体管道泄漏模态声发射时频定位方法[J]. 仪器仪表学报, 2016, 37(9):2068-2075. LI S Y, WANG P F, YAN D, et al. Leak location in gas pipelines with time-frequency analysis of modal acoustic emission using smooth pseudo wigner-ville distribution[J]. Chinese Journal of Scientific Instrument, 2016, 37(9):2068-2075.
[10] 杨丽丽, 谢昊飞, 李帅永, 等. 气体管道泄漏声发射单一非频散模态定位[J]. 仪器仪表学报, 2017, 38(4):969-976. YANG L L, XIE H F, LI S Y, et al. Leak location in gas pipelines by extraction of single non dispersive mode from leakage induced acoustic emission signal[J]. Chinese Journal of Scientific Instrument, 2017, 38(4):969-976.
[11] 毕海胜, 李自力, 胡德栋, 等. 储罐底板钢点蚀过程中声发射信号的聚类分析[J]. 中国石油大学学报(自然科学版), 2015, 39(6):145-152. BI H S, LI Z L, HU D D, et al. Cluster analysis of acoustic emission signals during tank bottom steel pitting corrosion process[J]. Journal of China University of Petroleum(Edition of Natural Science), 2015, 39(6):145-152.
[12] 王伟魁, 李一博, 杜刚, 等. 基于聚类分析的罐底声发射检测信号融合方法[J]. 振动与冲击, 2012, 31(17):181-185. WANG W K, LI Y B, DU G, et al. Signal fusion method for acoustic emission testing of tank bottom based on clustering analysis[J]. Journal of Vibration and Shock, 2012, 31(17):181-185
[13] 岳晓庆. 气液两相水平管流系统声特性研究[D]. 青岛:中国石油大学(华东), 2016. YUE X Q. Investigation of acoustic emission characteristics of horizontal air-liquid pipe flow[D]. Qingdao:China University of Petroleum, 2016.
[14] 沈功田. 声发射检测技术及应用[M]. 北京:科学出版社, 2015. SHEN G T. Acoustic Emission Testing Technology and Application[M]. Beijing:Science Press, 2015.
[15] LI S, MA Y, JIANG S, et al. The drag coefficient and the shape for a single bubble rising in non-newtonian fluids[J]. Journal of Fluids Engineering, 2012, 134(8):084501.
[16] 冯俊杰. 气液两相体系气泡的流体力学行为研究[D]. 北京:北京化工大学, 2016. FENG J J. Study of hydrodynamics behaviors of bubbles in gas-liquid systems[D]. Beijing:Beijing University of Chemical Technology, 2016.
[17] ACHARYA A, ULBRECHT J J. Note on the influence of viscoelasticity on the coalescence rate of bubbles and drops[J]. AIChE Journal, 1978, 24(2):348-351.
[18] 金建国. 聚类方法综述[J]. 计算机科学, 2014, 41(b11):288-293. JIN J G. Review of clustering method[J]. Computer Science, 2014, 41(b11):288-293.
[19] 万志华, 欧阳为民, 张平庸. 一种基于划分的动态聚类算法[J]. 计算机工程与设计, 2005, 26(1):177-179. WAN Z H, OUYANG W M, ZHANG P Y. Partition-based dynamic clustering algorithm[J]. Computer Engineering and Design, 2005, 26(1):177-179.
[20] 段明秀. 层次聚类算法的研究及应用[D]. 长沙:中南大学, 2009. DUAN M X. Research and application of hierarchical clustering algorithm[D]. Changsha:Central South University, 2009.
[21] 刘颖莹, 刘培玉, 王智昊, 等. 一种基于密度峰值发现的文本聚类算法[J]. 山东大学学报(理学版), 2016, 51(1):65-70. LIU Y Y, LIU P Y, WANG Z H, et al. A text clustering algorithm based on find of density peaks[J]. Journal of Shandong University, 2016, 51(1):65-70.
[22] 王鹏. 基于密度聚类算法的研究与改进[D]. 呼和浩特:内蒙古大学, 2017. WANG P. Research and improvement on density-based clustering algorithm[D]. Hohhot:Inner Mongolia University, 2017.
[23] 赵慧, 刘希玉, 崔海青. 网格聚类算法[J]. 计算机技术与发展, 2010, 20(9):83-85. ZHAO H, LIU X Y, CUI H Q. Grid-based clustering algorithm[J]. Computer Technology and Development, 2010, 20(9):83-85.
[24] 陈树. 聚类算法模型的研究及应用[D]. 无锡:江南大学, 2007. CHEN S. Researches on mathematical models for data Clustering and applications[D]. Wuxi:Jiangnan University, 2007.
[25] 赵德滨, 宋利利, 闫纪红. 基于模糊聚类分析的特征识别方法及其应用[J]. 计算机集成制造系统, 2009, 15(12):2417-2423. ZHAO D B, SONG L L, YAN J H. Feature recognition method based on fuzzy clustering analysis and its application[J]. Computer Integrated Manufacturing Systems, 2009, 15(12):2417-2423.
[26] 周世兵. 聚类分析中的最佳聚类数确定方法研究及应用[D]. 无锡:江南大学, 2011. ZHOU S B. Research and application on determining optimal number of clusters in cluster analysis[D]. Wuxi:Jiangnan University, 2011.
[27] 李荟娆. k-means聚类方法的改进及其应用[D]. 哈尔滨:东北农业大学, 2014. LI H X. Improved k-means clustering method and its application[D]. Harbin:Northeast Agricultural University, 2014.
[28] DAVIES D L, BOULDIN D W. A cluster separation measure[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1979, 1(2):224-227.
[29] 沈功田, 耿荣生, 刘时风. 声发射信号的参数分析方法[J]. 无损检测2002, 24(2):72-77. SHEN G T, GENG R S, LIU S F. Parameter analysis of acoustic emission signals[J]. Nonde Structive Testing, 2002, 24(2):72-77.
[30] YOON S W, CRUM L A, PROSPERETTI A, et al. An investigation of the collective oscillations of a bubble cloud[J]. Journal of the Acoustical Society of America, 1991, 89(2):161-171.

[1] 吴晅, 李晓瑞, 马骏, 秦梦竹, 周雅慧, 李海广. 不同管口浸没方式下气泡生成行为特性[J]. 化工学报, 2019, 70(3): 901-912.
[2] 吉文鹏, 杨慧中. 基于改进扩张搜索聚类算法的多流形软测量建模[J]. 化工学报, 2019, 70(2): 723-729.
[3] 夏红桃, 邹思宇, 肖杰. 随机粗糙表面上剪切变稀流体液滴的沉积过程模拟[J]. 化工学报, 2019, 70(2): 634-645.
[4] 梁婷, 张丹, 杨庆忠, 严俊杰. 纯水静态闪蒸起始阶段气泡群时空分布规律的实验研究[J]. 化工学报, 2019, 70(1): 49-55.
[5] 胡晨辉, 王亦飞, 包泽彬, 于广锁. 蒸发热水塔内固体颗粒对气泡运动的影响[J]. 化工学报, 2019, 70(1): 39-48.
[6] 耿宸, 郭亚军, 冯松, 毕勤成. 随机温度信号互相关法测量吸热型碳氢燃料密度[J]. 化工学报, 2019, 70(1): 24-31.
[7] 刘英杰, 祝京旭. 气泡驱动液固流化床内二元颗粒的流化行为[J]. 化工学报, 2019, 70(1): 91-98.
[8] 谢艳琦, 诸凯, 王雅博. 冷冻条件对植物细胞低温保存的影响[J]. 化工学报, 2018, 69(S2): 200-204.
[9] 王勤, 刘轶伦, 卢炜, 王世宽, 何巍, 郝楠, 张绍志. R134a/R23-DMF溶液气泡泵输送性能实验[J]. 化工学报, 2018, 69(S2): 116-122.
[10] 李晗, 蒲文灏, 杨宁, 毛衍钦, 岳晨, 张琦. 空气-石蜡直接接触换热特性实验研究[J]. 化工学报, 2018, 69(9): 3792-3798.
[11] 李玮豪, 张小松. 无霜空气源热泵系统夏季运行性能初步实验[J]. 化工学报, 2018, 69(9): 3975-3982.
[12] 张颖, 张诗, 何茂刚. 数字全息干涉法测量二元溶液互扩散系数[J]. 化工学报, 2018, 69(9): 3774-3782.
[13] 陈子丹, 罗会龙, 刘锦春, 曹振国, 赵新帅, 杨武彪. 寒冷地区CO2空气源热泵供暖运行性能分析[J]. 化工学报, 2018, 69(9): 4030-4036.
[14] 牛守梓, 吴海涛, 徐英, 李建立, 张涛. 基于文丘里管的页岩气试采期段塞流测量补偿方法[J]. 化工学报, 2018, 69(8): 3364-3372.
[15] 张建文, 苏国庆, 姜爱国. 液化气脱硫装置再生塔返塔管线弯头腐蚀失效机制分析[J]. 化工学报, 2018, 69(8): 3537-3547.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!