化工学报 ›› 2018, Vol. 69 ›› Issue (6): 2380-2387.doi: 10.11949/j.issn.0438-1157.20171410

• 热力学 • 上一篇    下一篇

甲胺铅碘钙钛矿物性及制备过程的分子模拟

陈超, 赵伶玲, 王镜凡   

  1. 东南大学能源与环境学院, 能源热转换及其过程测控教育部重点实验室, 江苏 南京 210096
  • 收稿日期:2017-10-24 修回日期:2017-12-13 出版日期:2018-06-05 发布日期:2018-01-03
  • 通讯作者: 赵伶玲 E-mail:zhao_lingling@seu.edu.cn
  • 基金资助:

    国家自然科学基金项目(51376045)。

Molecular simulation of physical properties and preparation of CH3NH3PbI3

CHEN Chao, ZHAO Lingling, WANG Jingfan   

  1. Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy & Environment, Southeast University, Nanjing 210096, Jiangsu, China
  • Received:2017-10-24 Revised:2017-12-13 Online:2018-06-05 Published:2018-01-03
  • Supported by:

    supported by the National Natural Science Foundation of China (51376045).

摘要:

应用分子动力学方法分析了甲胺铅碘晶体的结构特征与机械性质等相关物性,模拟了用蒸气沉积法在TiO2基底上制备甲胺铅碘晶体的过程,探讨了生成的PbI42-、PbI53-和PbI46-多面体的排布方式,结合周围CH3NH3+的分布筛选出满足结构要求的初生晶核,分析了前驱盐配比对甲胺铅碘初生晶核产量的影响。结果表明,在拉伸过程中,甲胺铅碘晶体经历弹性形变、塑性形变以及断裂三个阶段,拟合计算得到的弹性模量与实验值符合较好;大部分初生晶核以PbI53-金字塔的结构存在。前驱盐配比对各系统中PbIx多面体的总含量影响较小,但对其中排布有效的PbIx结构以及初生晶核的产量影响较大,二者产量随着配比PbI2∶CH3NH3I的增加而迅速减小,这一关系与研究者发现的实验现象相符。

关键词: 杂化钙钛矿, 分子模拟, 结晶, 前驱盐配比, 太阳能, 蒸气沉积法

Abstract:

Molecular dynamics simulation is used to investigate the structure characteristics and mechanical properties, and to discuss the vapor deposition of MAPbI3 on the TiO2 substrate under a temperature of 300 K and three precursor compositions of PbI2:CH3NH3I=1:2, 1:1 and 2:1, respectively. During the preparation processes, three polyhedral groups including PbI42- tetrahedra, PbI53- pyramids and PbI64- octahedra are produced. After classifying their arrangements and analyzing the distribution of CH3NH3+ cations, early CH3NH3PbI3 nuclei consisting of well-connected PbIx (x=4, 5 or 6) polyhedral clusters and sufficient amounts of surrounding CH3NH3+ cations were identified. The influence on early nuclei from the precursor compositions of PbI2:CH3NH3I were discussed. The results show that the calculated values of elastic modulus is in good agreement with the experimental results. The PbI53- pyramids dominate over other polyhedral groups during the vapor deposition simulations. Meanwhile, even though the total amounts of polyhedra have a small dependence on the precursor compositions, the populations of the well-connected clusters and the early nuclei decrease rapidly with increasing the PbI2:CH3NH3I ratio. This is in consistent with the experimental finding which to some degree, adding more CH3NH3I will optimize the device performance.

Key words: hybrid perovskite, molecular simulation, crystallization, precursor composition, solar energy, vapor deposition

中图分类号: 

  • TQ021.9

[1] GAO P, GRATZEL M, NAZEERUDDIN M K. Organohalide lead perovskites for photovoltaic applications[J]. Energy & Environmental Science, 2014, 7(8):2448-2463.
[2] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17):6050-6051.
[3] HODES G. Perovskite-based solar cells[J]. Science, 2013, 342(6156):317-318.
[4] LEE S W, KIM S, BAE S, et al. UV degradation and recovery of perovskite solar cells[J]. Scientific Reports, 2016, 6:38150.
[5] ETGAR L, GAO P, XUE Z, et al. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells[J]. Journal of the American Chemical Society, 2012, 134(42):17396-17399.
[6] IM J H, LEE C R, LEE J W, et al. 6.5% efficient perovskite quantum-dot-sensitized solar cell[J]. Nanoscale, 2011, 3(10):4088-4093.
[7] LEE M M, TEUSCHER J, MIYASAKA T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012, 338(6107):643-647.
[8] WERNER J, WENG C H, WALTER A, et al. Efficient monolithic perovskite/silicon tandem solar cell with cell area > 1 cm2[J]. The Journal of Physical Chemistry Letters, 2016, 7(1):161-166.
[9] YANG W S, NOH J H, JEON N J, et al. High-performance photovoltaic perovskite layers fabricated through intra-molecular exchange[J]. Science, 2015, 348(6240):1234-1237.
[10] NREL. Efficiency chart[EB/OL].[2017-04-14]. https://www.nrel.gov/pv/assets/images/efficiency-chart.png.
[11] BURSCHKA J, PELLET N, MOON S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499(7458):316-319.
[12] LIU M, JOHNSTON M B, SNAITH H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013, 501(7467):395-398.
[13] CHEN Q, ZHOU H, HONG Z, et al. Planar heterojunction perovskite solar cells via vapor-assisted solution process[J]. Journal of the American Chemical Society, 2014, 136(2):622-625.
[14] WU Y, ISLAM A, YANG X, et al. Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition[J]. Energy & Environmental Science, 2014, 7(9):2934-2938.
[15] VERLET L. Computer "experiments" on classical fluids (Ⅰ):Thermody-namical properties of Lennard-Jones molecules[J]. Physical Review, 1967, 159(1):98.
[16] OMINGUES G, VOLZ S, JOULAIN K, et al. Heat transfer between two nanoparticles through near field interaction[J]. Physical Review Letters, 2005, 94(8):085901.
[17] MATTONI A, FILIPPETTI A, SABA M I, et al. Methylammonium rotational dynamics in lead halide perovskite by classical molecular dynamics:the role of temperature[J]. The Journal of Physical Chemistry C, 2015, 119(30):17421-17428.
[18] MATSUI M, AKAOGI M. Molecular dynamics simulation of the structural and physical properties of the four polymorphs of TiO2[J]. Molecular Simulation, 1991, 6(4/5/6):239-244.
[19] LI P, ROBERTS B P, CHAKRAVORTY D K, et al. Rational design of particle mesh Ewald compatible Lennard-Jones parameters for +2 metal cations in explicit solvent[J]. Journal of Chemical Theory and Computation, 2013, 9(6):2733-2748.
[20] MCDONALD N A, DUFFY E M, JORGENSEN W L. Monte Carlo investigations of selective anion complexation by a bis (phenylurea) p-tert-butylcalix
[4] arene[J]. Journal of the American Chemical Society, 1998, 120(20):5104-5111.
[21] RAPP A K, CASEWIT C J, COLWELL K, et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations[J]. Journal of the American Chemical Society, 1992, 114(25):10024-10035.
[22] NOS S. A unified formulation of the constant temperature molecular dynamics methods[J]. The Journal of Chemical Physics, 1984, 81(1):511-519.
[23] HOOVER W G. Canonical dynamics:equilibrium phase-space distributions[J]. Physical Review A, 1985, 31(3):1695-1697.
[24] DARDEN T, YORK D, PEDERSEN L. Particle mesh Ewald:an N·log(N) method for Ewald sums in large systems[J]. The Journal of Chemical Physics, 1993, 98(12):10089-10092.
[25] AKTULGA H M, FOGARTY J C, PANDIT S A, et al. Parallel reactive molecular dynamics:numerical methods and algorithmic techniques[J]. Parallel Computing, 2012, 38(4):245-259.
[26] FRENKEL D, SMIT B. Understanding molecular simulation second edition from algorithms to applications computational science series vol 1[M]//Understanding Molecular Simulation:From Algorithms to Applications. San Francisco, Academic Press, Inc. 2001:66.
[27] TREACY M J, EBBESEN T, GIBSON J. Exceptionally high Young's modulus observed for individual carbon nanotubes[J]. Nature, 1996, 381(6584):678-695.
[28] HUMPHREY W, DALKE A, SCHULTEN K. VMD:visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14(1):33-38.
[29] WELLER M T, WEBER O J, HENRY P F, et al. Complete structure and cation orientation in the perovskite photovoltaic methylammonium lead iodide between 100 and 352 K[J]. Chemical Communications, 2015, 51(20):4180-4183.
[30] RAKITA Y, COHEN S R, KEDEM N K, et al. Mechanical properties of APbX3 (A=Cs or CH3NH3; X=I or Br) perovskite single crystals[J]. MRS Communications, 2015, 5(4):623-629.

[1] 韦攀, 喻家帮, 郭增旭, 杨肖虎, 何雅玲. 环形管填充金属泡沫强化相变蓄热可视化实验[J]. 化工学报, 2019, 70(3): 850-856.
[2] 何昌春, 徐磊, 陈伟, 徐晓峰, 欧阳鹏威. 常顶系统流动腐蚀机理预测及防控措施优化[J]. 化工学报, 2019, 70(3): 1027-1034.
[3] 王磊, 方桂英, 阳庆元. 金属-有机骨架材料CO2捕获性能的大规模计算筛选[J]. 化工学报, 2019, 70(3): 1135-1143.
[4] 闫鑫, 徐进良. 超疏水表面太阳能加热金-水纳米流体液滴蒸发特性[J]. 化工学报, 2019, 70(3): 892-900.
[5] 梁馨元, 张磊, 刘琳琳, 都健. 基于分子动力学的橡胶聚合物计算机辅助设计方法[J]. 化工学报, 2019, 70(2): 525-532.
[6] 蔡惊涛, 李代禧, 刘宝林, 栾翰森, 郭柏松, 魏冬青, 王浩. 尿素(520)晶面可控结晶的分子动力学模拟[J]. 化工学报, 2019, 70(1): 128-135.
[7] 雒苗苗, 郭宁, 胥义, 刘道平. 氧化石墨烯对VS55冻融过程结晶行为的影响[J]. 化工学报, 2019, 70(1): 370-378.
[8] 向文军, 朱朝菊, 刘丹, 周绿山. 分子动力学模拟研究两亲聚合物与疏水纳米粒子自组装核-壳结构[J]. 化工学报, 2019, 70(1): 345-354.
[9] 李兆宁, 赵彦杰, 汤玉鹏. 尿素水溶液凝固结晶附着力特性研究[J]. 化工学报, 2018, 69(S2): 232-239.
[10] 刘瑞见, 梁坤峰, 贾雪迎, 王林. 小型动态制冰机工作过程的结晶特性[J]. 化工学报, 2018, 69(S2): 450-458.
[11] 刘凡犁, 刘广志, 王沫然. 微纳孔隙中复杂流体液滴驱替的跨尺度混合模拟[J]. 化工学报, 2018, 69(9): 3783-3791.
[12] 皇甫丽娟, 江亚晓, 张森, 许婷婷, 徐俊敏, 王新昌, 陈永生. CBD方法制备的Zn(O,S)薄膜的微结构表征及性能[J]. 化工学报, 2018, 69(8): 3732-3739.
[13] 齐畅, 卢滇楠, 刘永民. 优化温度相关力场预测正构烷烃热力学性质[J]. 化工学报, 2018, 69(8): 3338-3347.
[14] 季佳圆, 赵伶玲. 范德华力对Lennard-Jones体黏弹性的影响[J]. 化工学报, 2018, 69(8): 3331-3337.
[15] 王瑞, 许妍霞, 宋兴福, 徐志刚, 于建国. 对二甲苯降膜结晶动力学[J]. 化工学报, 2018, 69(8): 3460-3468.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!