化工学报 ›› 2018, Vol. 69 ›› Issue (6): 2388-2395.doi: 10.11949/j.issn.0438-1157.20171376

• 热力学 • 上一篇    下一篇

赤藓糖醇微观固液相变及热传导的分子动力学研究

冯飙, 邵雪峰, 朱子钦, 范利武   

  1. 浙江大学热工与动力系统研究所, 浙江 杭州 310027
  • 收稿日期:2017-10-17 修回日期:2018-02-26 出版日期:2018-06-05 发布日期:2018-03-22
  • 通讯作者: 范利武 E-mail:liwufan@zju.edu.cn
  • 基金资助:

    浙江省杰出青年科学基金项目(LR17E060001)。

Molecular dynamics study of solid-liquid phase change and heat conduction of erythritol at microscale

FENG Biao, SHAO Xuefeng, ZHU Ziqin, FAN Liwu   

  1. Institute of Thermal Science and Power Systems, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • Received:2017-10-17 Revised:2018-02-26 Online:2018-06-05 Published:2018-03-22
  • Supported by:

    supported by the Zhejiang Provincial Natural Science Foundation for Distinguished Young Scholars (LR17E060001).

摘要:

采用分子动力学方法对微尺度下赤藓糖醇的固液相变及热传导现象进行了模拟研究。首先选用GROMOS力场计算了赤藓糖醇固液两相的密度并将预测结果与实测值进行对比,验证了该力场的适用性。采用界面/NPT法模拟了赤藓糖醇的微观熔化过程,通过体系的体积突变得到预测熔点约为400 K,和实测值(392±1) K较为吻合。与直接加热纯固态赤藓糖醇的方法相比,该方法由于引入固液界面降低了成核自由能位垒,使得微观熔化过程的模拟更准确。此外,基于非平衡分子动力学方法研究了赤藓糖醇分子间的微观热传导现象。模拟得到液态赤藓糖醇的热导率为0.33~0.35 Wm-1K-1,与宏观实测值(0.33±0.02) Wm-1K-1保持一致。因为处于液态时赤藓糖醇的分子分布具有无序性,所以其热导率预测值几乎不随模拟系统的尺寸而变化。

关键词: 赤藓糖醇, 分子模拟, 相变, 界面/NPT法, 热传导

Abstract:

The solid-liquid phase change and heat conduction phenomena of erythritol at the microscale were studied using molecular dynamics (MD) simulation. The GROMOS force field was first utilized to calculate the density of erythritol in both solid and liquid phases. The applicability of this force field was verified by comparing the predicted density with the measured values. The microscale melting process of erythritol was simulated using interface/NPT method. The temperature corresponding to a sudden volume increase of the simulated system was identified as the melting point (~400 K), which is in agreement with the measured value of (392±1) K. Due to lowering of the nucleation free energy barrier by introducing a solid-liquid interface, this method was exhibited to have a better performance in simulating the microscale melting process than the direct heating method on solid erythritol. Moreover, non-equilibrium MD simulation was performed to study the microscale heat conduction between erythritol molecules. The thermal conductivity of liquid erythritol was predicted in the range of 0.33-0.35 Wm-1K-1, which is consistent with the measured value of (0.33±0.02) Wm-1K-1 on bulk erythritol. The predicted thermal conductivity was found to have a negligible dependence on the size of the simulated system because of the random distribution of erythritol molecules in liquid phase.

Key words: erythritol, molecular simulation, phase change, interface/NPT method, heat conduction

中图分类号: 

  • TK124

[1] KAIZAWA A, MARUOKA N, KAWAI A, et al. Thermophysical and heat transfer properties of phase change material candidate for waste heat transportation system[J]. Heat and Mass Transfer, 2008, 44(7):763-769.
[2] SOLÉ A, NEUMANN H, NIEDERMAIER S, et al. Stability of sugar alcohols as PCM for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2014, 126(11):125-134.
[3] WANG W, HE S, GUO S, et al. A combined experimental and simulation study on charging process of erythritol-HTO direct-blending based energy storage system[J]. Energy Conversion and Management, 2014, 83:306-313.
[4] AGYENIM F, EAMES P, SMYTH M. Experimental study on the melting and solidification behaviour of a medium temperature phase change storage material (erythritol) system augmented with fins to power a LiBr/H2O absorption cooling system[J]. Renewable Energy, 2011, 36(1):108-117.
[5] HÖHLEIN S, KÖNIG-HAAGEN A, BRÜGGEMANN D. Thermophysical characterization of MgCl2·6H2O, xylitol and erythritol as phase change materials (PCM) for latent heat thermal energy storage (LHTES)[J]. Materials, 2017, 10(4):444.
[6] WANG Y, WANG L, XIE N, et al. Experimental study on the melting and solidification behavior of erythritol in a vertical shell-and-tube latent heat thermal storage unit[J]. International Journal of Heat and Mass Transfer, 2016, 99:770-781.
[7] SHIN H K, RHEE K Y, PARK S J. Effects of exfoliated graphite on the thermal properties of erythritol-based composites used as phase-change materials[J]. Composites Part B:Engineering, 2016, 96:350-353.
[8] GAO L, ZHAO J, AN Q, et al. Experiments on thermal performance of erythritol/expanded graphite in a direct contact thermal energy storage container[J]. Applied Thermal Engineering, 2017, 113:858-866.
[9] NOMURA T, OKINAKA N, AKIYAMA T. Impregnation of porous material with phase change material for thermal energy storage[J]. Materials Chemistry and Physics, 2009, 115(2):846-850.
[10] ZHANG H, DUQUESNE M, GODIN A, et al. Experimental and in silico characterization of xylitol as seasonal heat storage material[J]. Fluid Phase Equilibria, 2016, 436:55-68.
[11] JORGENSEN W L, AND D S M, TIRADORIVES J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids[J]. Journal of the American Chemical Society, 1996, 118(45):11225-11236.
[12] WANG J, WOLF R M, CALDWELL J W, et al. Development and testing of a general amber force field[J]. Journal of Computational Chemistry, 2004, 25(9):1157-1174.
[13] BROOKS B R, BROOKS C L, MACKERELL A D, et al. CHARMM:The biomolecular simulation program[J]. Journal of Computational Chemistry, 2009, 30(10):1545-1614.
[14] INAGAKI T, ISHIDA T. Computational analysis of sugar alcohols as phase-change material:insight into the molecular mechanism of thermal energy storage[J]. Journal of Physical Chemistry C, 2016, 120(15):7903-7915.
[15] CALDWELL J W, ROSS W R, CHEATHAM Ⅲ T E, et al. AMBER, a computer program for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to elucidate the structures and energies of molecules[J]. Computer Physics Communications, 1995, 91:1-41.
[16] SASTRI S R S, RAO K K. A new temperature-thermal conductivity relationship for predicting saturated liquid thermal conductivity[J]. Chemical Engineering Journal, 1999, 74(3):161-169.
[17] MATSUBARA H, KIKUGAWA G, BESSHO T, et al. Molecular dynamics study on the role of hydroxyl groups in heat conduction in liquid alcohols[J]. International Journal of Heat and Mass Transfer, 2017, 108:749-759.
[18] 朱宇, 陆小华, 丁皓, 等. 分子模拟在化工应用中的若干问题及思考[J]. 化工学报, 2004, 55(8):1213-1223. ZHU Y, LU X H, DING H, et al. Molecular simulation in chemical engineering[J]. Journal of Chemical Industry and Engineering (China), 2004, 55(8):1213-1223.
[19] 陈占秀, 陈冠益, 王艳, 等. 丙三醇与1, 6-己二醇混合物降温凝固过程的分子动力学模拟[J]. 化工学报, 2013, 64(7):2316-2321. CHEN Z X, CHEN G Y, WANG Y, et al. Molecular dynamics simulation of solidification process for mixtures of glycerol and 1, 6-hexanediol[J]. CIESC Journal, 2013, 64(7):2316-2321.
[20] HORTA B A C, FUCHS P F J, VAN GUNSTEREN W F, et al. New interaction parameters for oxygen compounds in the GROMOS force field:improved pure-liquid and solvation properties for alcohols, ethers, aldehydes, ketones, carboxylic acids, and esters[J]. Journal of Chemical Theory and Computation, 2011, 7(4):1016-1031.
[21] SCHMID N, EICHENBERGER A P, CHOUTKO A, et al. Definition and testing of the GROMOS force-field versions 54A7 and 54B7[J]. European Biophysics Journal, 2011, 40(7):843-856.
[22] BATISTA M L S, PE?REZ-SA?NCHEZ G, GOMES J R B, et al. Evaluation of the GROMOS 56ACARBO force field for the calculation of structural, volumetric, and dynamic properties of aqueous glucose systems[J]. Journal of Physical Chemistry B, 2015, 119(49):15310-15319.
[23] SHIMADA A. Crystal structure and lattice energy of i-erythritol. (Ⅰ):Crystal structure of i-erythritol[J]. Bulletin of the Chemical Society of Japan, 1959, 32(4):325-329.
[24] PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1):1-19.
[25] ZHANG Y, MAGINN E J. A comparison of methods for melting point calculation using molecular dynamics simulations[J]. Journal of Chemical Physics, 2012, 136(14):144116.
[26] WATT S W, CHISHOLM J A, JONES W, et al. A molecular dynamics simulation of the melting points and glass transition temperatures of myo-and neo-inositol[J]. Journal of Chemical Physics, 2004, 121(19):9565-9573.
[27] 徐上, 赵伶玲, 蔡庄立, 等. 二维氮化铝材料传热性能的模拟研究[J]. 化工学报, 2017, 68(9):3321-3327. XU S, ZHAO L L, CAI Z L, et al. Modeling study on thermal conductivity of two-dimensional hexagonal aluminum nitride aluminum nitride[J]. CIESC Journal, 2017, 68(9):3321-3327.
[28] WIRNSBERGER P, FRENKEL D, DELLAGO C. An enhanced version of the heat exchange algorithm with excellent energy conservation properties[J]. Journal of Chemical Physics, 2015, 143(12):124104.
[29] HAFSKJOLD B, IKESHOJI T, RATKJE S K. On the molecular mechanism of thermal diffusion in liquids[J]. Molecular Physics, 1993, 80(6):1389-1412.
[30] SCHELLING P K, PHILLPOT S R, KEBLINSKI P. Comparison of atomic-level simulation methods for computing thermal conductivity[J]. Physical Review B, 2002, 65(14):144306.

[1] 王舜浩, 朱文俐, 胡正根, 周芮, 余柳, 王彬, 张小斌. 液氢缩比贮箱蒸发特性数值模拟及实验验证[J]. 化工学报, 2019, 70(3): 840-849.
[2] 王耀武, 彭建平, 狄跃忠, 蒿鹏程. 铝电解槽干式防渗料在电解过程中的反应机理探讨[J]. 化工学报, 2019, 70(3): 1035-1041.
[3] 韦攀, 喻家帮, 郭增旭, 杨肖虎, 何雅玲. 环形管填充金属泡沫强化相变蓄热可视化实验[J]. 化工学报, 2019, 70(3): 850-856.
[4] 刘小诗, 邹得球, 贺瑞军, 马先锋. 氧化石墨烯/石蜡复合相变乳液的制备及对流传热特性[J]. 化工学报, 2019, 70(3): 1188-1197.
[5] 王磊, 方桂英, 阳庆元. 金属-有机骨架材料CO2捕获性能的大规模计算筛选[J]. 化工学报, 2019, 70(3): 1135-1143.
[6] 周鑫, 邓乐东, 王宏, 朱恂, 陈蓉, 廖强, 丁玉栋. 圆柱壁面上液滴凝固相变对其运动行为的影响[J]. 化工学报, 2019, 70(3): 883-891.
[7] 梁馨元, 张磊, 刘琳琳, 都健. 基于分子动力学的橡胶聚合物计算机辅助设计方法[J]. 化工学报, 2019, 70(2): 525-532.
[8] 陈卫, 任瑛. 流态化与物质相变的相似性[J]. 化工学报, 2019, 70(1): 1-9.
[9] 蔡惊涛, 李代禧, 刘宝林, 栾翰森, 郭柏松, 魏冬青, 王浩. 尿素(520)晶面可控结晶的分子动力学模拟[J]. 化工学报, 2019, 70(1): 128-135.
[10] 周孙希, 章学来, 刘升, 陈启杨, 徐笑锋, 王迎辉. 癸醇-棕榈酸/膨胀石墨低温复合相变材料的制备与性能[J]. 化工学报, 2019, 70(1): 290-297.
[11] 向文军, 朱朝菊, 刘丹, 周绿山. 分子动力学模拟研究两亲聚合物与疏水纳米粒子自组装核-壳结构[J]. 化工学报, 2019, 70(1): 345-354.
[12] 张亮, 史忠科. 相变储能技术在汽车节能中的应用进展[J]. 化工学报, 2018, 69(S2): 17-25.
[13] 万星晨, 林文胜. 螺旋管丙烷流动沸腾换热特性[J]. 化工学报, 2018, 69(S2): 135-140.
[14] 周刊, 李蔚, 李俊业, 朱华, 盛况, 白光辉, 常浩. 微细通道内超亲水改性表面饱和沸腾的传热特性[J]. 化工学报, 2018, 69(S2): 82-88.
[15] 徐笑影, 尤灏, 王文. 利用元胞自动机模拟CO2或水蒸气在液态甲烷中的凝华行为[J]. 化工学报, 2018, 69(S2): 402-407.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曹兴,杜文静,程林. 连续螺旋折流板换热器流动与传热性能及熵产分析[J]. 化工学报, 2012, 63(8): 2375 -2382 .
[2] 张兰河,李军,郭静波,贾艳萍,张海丰. EPS对活性污泥絮凝沉降性能与表面性质的影响[J]. 化工学报, 2012, 63(6): 1865 -1871 .
[3] 陈卫东, 孙彦. 吸附密度对蛋白质在离子交换吸附剂中孔扩散系数的影响 [J]. 化工学报, 2003, 54(2): 215 -220 .
[4] 周新建, 陈听宽. 引射喷嘴流量系数的计算方法 [J]. 化工学报, 2002, 53(10): 1092 -1094 .
[5] 孙庆雷, 李文, 李保庆. 神木煤热解的挥发分收率与岩相组成的关系 [J]. 化工学报, 2003, 54(2): 269 -272 .
[6] 刘唐, 骞伟中, 汪展文, 魏飞, 金涌, 李俊诚, 李永丹. 流化床中甲烷催化裂解制备碳纳米管和氢气 [J]. 化工学报, 2003, 54(11): 1614 -1618 .
[7] 赵宗彬, 李文, 李保庆. 矿物质对煤焦燃烧过程中NO释放规律的影响 [J]. 化工学报, 2003, 54(1): 100 -106 .
[8] 李瑞, 许春建, 曾爱武, 周明. 精馏塔板上双液层三维模型的流体力学计算 [J]. 化工学报, 2003, 54(2): 159 -163 .
[9] 詹水清1,周孑民1,吴烨2,李远1,梁艳南1,杨莺1. 高温熔盐热物性的动态测定与误差修正方法[J]. 化工学报, 2012, 63(8): 2341 -2347 .
[10] 韩佳宾, 王静康. 咖啡因在水和乙醇中的溶解度及其关联 [J]. 化工学报, 2004, 55(1): 125 -128 .