化工学报 ›› 2018, Vol. 69 ›› Issue (1): 295-308.doi: 10.11949/j.issn.0438-1157.20171118

• 综述与专论 • 上一篇    下一篇

微结构反应器气固相催化过程强化的研究与工业化进展

曹晨熙1,2, 张辇1, 储博钊3, 程易1   

  1. 1 清华大学化学工程系, 北京 100084;
    2 华东理工大学化学工程联合国家重点实验室, 上海 200237;
    3 中国石化上海石油化工研究院, 上海 201208
  • 收稿日期:2017-08-18 修回日期:2017-10-08 出版日期:2018-01-05 发布日期:2017-10-12
  • 通讯作者: 程易 E-mail:yicheng@mail.tsinghua.edu.cn
  • 基金资助:

    国家自然科学基金项目(21576151);中石油研究基金项目。

Progress in research and industrial development of microstructured reactors for intensifying gas-solid catalytic reactions

CAO Chenxi1,2, ZHANG Nian1, CHU Bozhao3, CHENG Yi1   

  1. 1 Department of Chemical Engineering, Tsinghua University, Beijing 100084, China;
    2 State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China;
    3 SINOPEC Shanghai Institute of Petrochemical Technology, Shanghai 201208, China
  • Received:2017-08-18 Revised:2017-10-08 Online:2018-01-05 Published:2017-10-12
  • Contact: 10.11949/j.issn.0438-1157.20171118 E-mail:yicheng@mail.tsinghua.edu.cn
  • Supported by:

    supported by the National Natural Science Foundation of China (21576151).

摘要:

轻烃的气固相催化转化与合成是重要的基础能源化工过程,其苛刻的反应条件与显著的热效应严重影响了反应器生产效率、过程能耗与排放。微结构催化反应器传递性能优越,可兼顾紧凑性与低压降,能在高反应通量下精确调控轻烃气固相催化转化与合成过程,适应日益增长的分布式生产需求。介绍了微结构催化反应器的制造并重点讨论了催化剂-反应器集成方式,以强吸热的甲烷蒸汽重整过程和强放热的甲烷化、乙烷氧化脱氢过程为例,综述了微结构反应器气固催化过程强化的研究与工业化进展,展望了新技术的未来发展方向。

关键词: 微通道, 催化, 制氢, 重整, 甲烷化, 氧化脱氢

Abstract:

Catalytic processing of light hydrocarbons provides fuels and raw chemicals, and is thus of paramount importance for the energy and chemical industry. However, the harsh conditions and significant heat effects cause undesirable inefficiency, high power consumption and carbon emission of conventional reactors. Microstructured catalytic reactors enable excellent heat and mass transfer and potentially lower the pressure drop with a compact design, thus allowing high-throughput light hydrocarbons processing under strict control of temperature and concentration as demanded by distributed production. This paper summarizes the fabrication technology and key R&D activities with regard to microstructured reactors for intensifying gas-solid catalytic reactions. Representative examples of light hydrocarbons processing in microstructured reactors are reviewed including the endothermic steam methane reforming and the exothermic methanation and ethane oxidative dehydrogenation processes. It is believed that innovative and efficient reactor-catalyst integration could boost even wider applications of the emerging reactor technology, which would eventually reshape the energy and chemical industry.

Key words: microchannels, catalysis, hydrogen production, reforming, methanation, oxidative dehydrogenation

中图分类号: 

  • TQ03-39

[1] JENSEN K F. Flow chemistry-microreaction technology comes of age[J]. AIChE J., 2017, 63(3):858-869.
[2] MOULIJN J A, KAPTEIJN F. Monolithic reactors in catalysis:excellent control[J]. Curr. Opin. Chem. Eng., 2013, 2(3):346-353.
[3] GOVENDER S, FRIEDRICH H. Monoliths:a review of the basics, preparation methods and their relevance to oxidation[J]. Catalysts, 2017, 7(2):62.
[4] KOLB G. Review:microstructured reactors for distributed and renewable production of fuels and electrical energy[J]. Chem. Eng. Process., 2013, 65:1-44.
[5] DELPARISH A, AVCI A K. Intensified catalytic reactors for Fischer-Tropsch synthesis and for reforming of renewable fuels to hydrogen and synthesis gas[J]. Fuel Process. Technol., 2016, 151:72-100.
[6] MOHARANA M K, PEELA N R, KHANDEKAR S, et al. Distributed hydrogen production from ethanol in a microfuel processor:issues and challenges[J]. Renew. Sustain. Energy Rev., 2011, 15(1):524-533.
[7] INOUE T, SCHMIDT M A, JENSEN K F. Microfabricated multiphase reactors for the direct synthesis of hydrogen peroxide from hydrogen and oxygen[J]. Ind. Eng. Chem. Res., 2007, 46(4):1153-1160.
[8] MARKOWZ G, SCHIRRMEISTER S, ALBRECHT J, et al. Microstructured reactors for heterogeneously catalyzed gas-phase reactions on an industrial scale[J]. Chem. Eng. Technol., 2005, 28(4):459-464.
[9] ALMEIDA L C, SANZ O, MERINO D, et al. Kinetic analysis and microstructured reactors modeling for the Fischer-Tropsch synthesis over a Co-Re/Al2O3 catalyst[J]. Catal. Today, 2013, 215:103-111.
[10] JAROSCH K T, TONKOVICH A L Y, PERRY S T, et al. Microchannel reactors for intensifying gas-to-liquid technology[M]//WANG Y, HOLLADAY J D. Microreactor Technology and Process Intensification. Washington, DC:American Chemical Society, 2005:258-272.
[11] KOC S, AVCI A K. Reforming of glycerol to hydrogen over Ni-based catalysts in a microchannel reactor[J]. Fuel Process. Technol., 2017, 156:357-365.
[12] MATSON D W, MARTIN P M, STEWART D C, et al. Fabrication of microchannel chemical reactors using a metal lamination process[M]//EHRFELD W. Microreaction Technology:Industrial Prospects. Berlin, Heidelberg:Springer Berlin Heidelberg, 2000:62-71.
[13] 埃尔费尔德, 黑塞尔, 勒韦. 微反应器:现代化学中的新技术[M]. 骆广生, 王玉军, 吕阳成, 译. 北京:化学工业出版社, 2004:14-28. EHRFELD W, HESSEL V, LÖWE H. Microreactors:New Technology for Modern Chemistry[M]. LUO G S, WANG Y J, LÜ Y C, trans. Beijing:Chemical Industry Press, 2004:14-28.
[14] GAVRⅡLIDIS A, ANGELI P, CAO E, et al. Technology and applications of microengineered reactors[J]. Chem. Eng. Res. Des., 2002, 80(A1):3-30.
[15] KOLB G. Micro-reactors for fuel processing[M]//STOLTEN D, EMONTS B. Fuel Cell Science and Engineering:Materials, Processes, Systems and Technology. Weinheim:Wiley-VCH Verlag GmbH & Co. KGaA, 2012:185-217.
[16] LAGUNA O H, GONZ LEZ CASTA O M, CENTENO M A, et al. Microreactors technology for hydrogen purification:effect of the catalytic layer thickness on CuOx/CeO2-coated microchannel reactors for the PROX reaction[J]. Chem. Eng. J., 2015, 275:45-52.
[17] CRUZ S, SANZ O, POYATO R, et al. Design and testing of a microchannel reactor for the PROX reaction[J]. Chem. Eng. J., 2011, 167(2/3):634-642.
[18] GRASSO G, SCHAEFER G, SCHUURMAN Y, et al. Methane steam reforming in microchannel reactors:technical challenges and performances benefits[J]. Top. Catal., 2011, 54(13):859.
[19] URIZ I, ARZAMENDI G, DI GUEZ P M, et al. CFD analysis of the effects of the flow distribution and heat losses on the steam reforming of methanol in catalytic (Pd/ZnO) microreactors[J]. Chem. Eng. J., 2014, 238:37-44.
[20] RAMLER J J, TONKOVICH A L, TAHA R, et al. Loading/unloading of particulates to/from microchannel reactors:US2009/0252658A1[P]. 2009-10-08.
[21] TONKOVICH A L Y, WANG Y. Overview of early-stage microchannel reactor development at Pacific Northwest National Laboratory[M]//WANG Y, HOLLADAY J D. Microreactor Technology and Process Intensification. Washington, DC:American Chemical Society, 2005:47-65.
[22] RENKEN A, KIWI-MINSKER L. Microstructured catalytic reactors[M]//BRUCE C G, HELMUT K. Advances in Catalysis. New York:Academic Press, 2010:47-122.
[23] AVILA P, MONTES M, MIR E E. Monolithic reactors for environmental applications[J]. Chem. Eng. J., 2005, 109(1):11-36.
[24] MEILLE V. Review on methods to deposit catalysts on structured surfaces[J]. Appl. Catal. A Gen., 2006, 315:1-17.
[25] JIA L, SHEN M, WANG J. Preparation and characterization of dip-coated γ-alumina based ceramic materials on FeCrAl foils[J]. Surf. Coat. Technol., 2007, 201(16):7159-7165.
[26] STEFANESCU A, VAN VEEN A C, MIRODATOS C, et al. Wall coating optimization for microchannel reactors[J]. Catal. Today, 2007, 125(1):16-23.
[27] 张志飞, 周静红, 叶光华, 等. 涂覆液种类对FeCrAl金属载体上氧化铝涂层性质的影响[J]. 化工学报, 2016, 67(11):4742-4749. ZHANG Z F, ZHOU J H, YE G H, et al. Influence of coating solutions on properties of γ-Al2O3 washcoat over FeCrAl substrate[J]. CIESC Journal, 2016, 67(11):4742-4749.
[28] KOLB G, BAIER T, SCHURER J, et al. A micro-structured 5 kW complete fuel processor for iso-octane as hydrogen supply system for mobile auxiliary power units(Ⅱ):Development of water-gas shift and preferential oxidation catalysts reactors and assembly of the fuel processor[J]. Chem. Eng. J., 2008, 138(1/2/3):474-489.
[29] WINDES W E, ZIMMERMAN J, REIMANIS I E. Electrophoretic deposition applied to thick metal-ceramic coatings[J]. Surf. Coat. Technol., 2002, 157(2):267-273.
[30] BOCCACCINI A R, CHO J, ROETHER J A, et al. Electrophoretic deposition of carbon nanotubes[J]. Carbon, 2006, 44(15):3149-3160.
[31] 漆波. 甲烷蒸汽重整反应本征动力学及微通道反应器性能研究[D]. 重庆:重庆大学, 2009. QI B. The intrinsic kinetics of methane steam reforming and reaction performance study in micro-channel reactor[D]. Chongqing:Chongqing University, 2009.
[32] ALMEIDA L C, SANZ O, D'OLHABERRIAGUE J, et al. Microchannel reactor for Fischer-Tropsch synthesis:adaptation of a commercial unit for testing microchannel blocks[J]. Fuel, 2013, 110:171-177.
[33] JOHNSON B R, CANFIELD N L, TRAN D N, et al. Engineered SMR catalysts based on hydrothermally stable, porous, ceramic supports for microchannel reactors[J]. Catal. Today, 2007, 120(1):54-62.
[34] VALENTINI M, GROPPI G, CRISTIANI C, et al. The deposition of γ-Al2O3 layers on ceramic and metallic supports for the preparation of structured catalysts[J]. Catal. Today, 2001, 69(1):307-314.
[35] ZHAO S, ZHANG J, WENG D, et al. A method to form well-adhered γ-Al2O3 layers on FeCrAl metallic supports[J]. Surf. Coat. Technol., 2003, 167(1):97-105.
[36] 张忠涛, 程易, 翟绪丽, 等. 一种在金属基板上制备催化剂涂层的方法:102553596B[P]. 2013-07-31. ZHANG Z T, CHENG Y, ZHAI X L, et al. Method for preparing catalyst coating on metal substrate:102553596B[P]. 2013-07-31.
[37] HEINZEL A, VOGEL B, HÜBNER P. Reforming of natural gas-hydrogen generation for small scale stationary fuel cell systems[J]. J. Power Sources, 2002, 105(2):202-207.
[38] ROSTRUP-NIELSEN T. Manufacture of hydrogen[J]. Catal. Today, 2005, 106(1/2/3/4):293-296.
[39] GABRIEL K J, NOURELDIN M, EL-HALWAGI M M, et al. Gas-to-liquid (GTL) technology:targets for process design and water-energy nexus[J]. Curr. Opin. Chem. Eng., 2014, 5:49-54.
[40] ROSTRUP-NIELSEN J. Steam reforming of hydrocarbons. A historical perspective[J]. Stud. Surf. Sci. Catal., 2004, 147:121-126.
[41] ZANFIR M, GAVRⅡLIDIS A. Catalytic combustion assisted methane steam reforming in a catalytic plate reactor[J]. Chem. Eng. Sci., 2003, 58(17):3947-3960.
[42] MEI H, LI C Y, JI S F, et al. Modeling of a metal monolith catalytic reactor for methane steam reforming-combustion coupling[J]. Chem. Eng. Sci., 2007, 62(16):4294-4303.
[43] VENKATARAMAN K, WANAT E C, SCHMIDT L D. Steam reforming of methane and water-gas shift in catalytic wall reactors[J]. AIChE J., 2003, 49(5):1277-1284.
[44] YUAN J, REN F, SUNDEN B. Analysis of chemical-reaction-coupled mass and heat transport phenomena in a methane reformer duct for PEMFCs[J]. Int. J. Heat Mass Transfer, 2007, 50(3/4):687-701.
[45] ZANFIR M, GAVRⅡLIDIS A. Parametric sensitivity in catalytic plate reactors with first-order endothermic-exothermic reactions[J]. Chem. Eng. J., 2002, 86(3):277-286.
[46] FRAUHAMMER J, EIGENBERGER G, VON HIPPEL L, et al. A new reactor concept for endothermic high-temperature reactions[J]. Chem. Eng. Sci., 1999, 54(15/16):3661-3670.
[47] ZANFIR M, GAVRⅡLIDIS A. Influence of flow arrangement in catalytic plate reactors for methane steam reforming[J]. Chem. Eng. Res. Des., 2004, 82(A2):252-258.
[48] LAKHETE P, JANARDHANAN V M. Modeling process intensified catalytic plate reactor for synthesis gas production[J]. Chem. Eng. Sci., 2014, 110:13-19.
[49] ARZAMENDI G, DIEGUEZ P M, MONTES M, et al. Methane steam reforming in a microchannel reactor for GTL intensification:a computational fluid dynamics simulation study[J]. Chem. Eng. J., 2009, 154(1/2/3):168-173.
[50] JIWANURUK T, PUTIVISUTISAK S, PONPESH P, et al. Comparison between parallel and checked arrangements of micro reformer for H2 production from methane[J]. Chem. Eng. J., 2015, 268:135-143.
[51] ZHAI X, DING S, CHENG Y, et al. CFD simulation with detailed chemistry of steam reforming of methane for hydrogen production in an integrated micro-reactor[J]. Int. J. Hydrogen Energ., 2010, 35(11):5383-5392.
[52] KARAKAYA M, AVCI A K. Microchannel reactor modeling for combustion driven reforming of iso-octane[J]. Int. J. Hydrogen Energ., 2011, 36(11):6569-6577.
[53] TONKOVICH A L Y, YANG B, PERRY S T, et al. From seconds to milliseconds to microseconds through tailored microchannel reactor design of a steam methane reformer[J]. Catal. Today, 2007, 120(1):21-29.
[54] STEFANIDIS G D, VLACHOS D G. Millisecond methane steam reforming via process and catalyst intensification[J]. Chem. Eng. Technol., 2008, 31(8):1201-1209.
[55] STEFANIDIS G D, VLACHOS D G, KAISARE N S, et al. Methane steam reforming at microscales:operation strategies for variable power output at millisecond contact times[J]. AIChE J., 2009, 55(1):180-191.
[56] STEFANIDIS G D, VLACHOS D G. Intensification of steam reforming of natural gas:choosing combustible fuel and reforming catalyst[J]. Chem. Eng. Sci., 2010, 65(1):398-404.
[57] ARZAMENDI G, URIZ I, NAVAJAS A, et al. A CFD study on the effect of the characteristic dimension of catalytic wall microreactors[J]. AIChE J., 2012, 58(9):2785-2797.
[58] DING S, WU C, CHENG Y, et al. Analysis of catalytic partial oxidation of methane on rhodium-coated foam monolith using CFD with detailed chemistry[J]. Chem. Eng. Sci., 2010, 65(6):1989-1999.
[59] CAO C, ZHANG N, CHEN X, et al. A comparative study of Rh and Ni coated microchannel reactor for steam methane reforming using CFD with detailed chemistry[J]. Chem. Eng. Sci., 2015, 137:276-286.
[60] CAO C, ZHANG N, DANG D, et al. Numerical evaluation of a microchannel methane reformer used for miniaturized GTL:operating characteristics and greenhouse gases emission[J]. Fuel Process. Technol., 2017, 167:78-91.
[61] CAO C, ZHANG N, CHENG Y. Numerical analysis on steam methane reforming in a plate microchannel reactor:effect of washcoat properties[J]. Int. J. Hydrogen Energ., 2016, 41(42):18921-18941.
[62] CAO C, ZHANG N, DANG D, et al. Hybrid modeling of integrated microchannel methane reformer for miniaturized GTL application using an effectiveness factor submodel based on complex surface chemistry[J]. Chem. Eng. J., 2017, 316:715-726.
[63] TONKOVICH A Y, PERRY S, WANG Y, et al. Microchannel process technology for compact methane steam reforming[J]. Chem. Eng. Sci., 2004, 59(22/23):4819-4824.
[64] EIGENBERGER G, KOLIOS G, NIEKEN U. Thermal pattern formation and process intensification in chemical reaction engineering[J]. Chem. Eng. Sci., 2007, 62(18/19/20):4825-4841.
[65] GL CKLER B, GRITSCH A, MORILLO A, et al. Autothermal reactor concepts for endothermic fixed-bed reactions[J]. Chem. Eng. Res. Des., 2004, 82(2):148-159.
[66] KOORTZEN J G, BAINS S, KOCHER L L, et al. Modular gas-to-liquid:converting a liability into economic value[J]. Ind. Eng. Chem. Res., 2014, 53(5):1720-1726.
[67] LEROU J J, TONKOVICH A L, SILVA L, et al. Microchannel reactor architecture enables greener processes[J]. Chem. Eng. Sci., 2010, 65(1):380-385.
[68] 徐润, 胡志海, 聂红. 微反应器技术在Fischer-Tropsch合成中的应用进展[J]. 化工进展, 2016, 35(3):685-691. XU R, HU Z H, NIE H. Recent advances on Fischer-Tropsch synthesis in micro-reactor[J]. Chem. Ind. Eng. Prog., 2016, 35(3):685-691.
[69] BOWE M J. Plate-type reactor with a removable catalytic structure:WO2005102511A1[P]. 2005-11-03.
[70] VITA A, CRISTIANO G, ITALIANO C, et al. Syngas production by methane oxy-steam reforming on Me/CeO2(Me=Rh, Pt, Ni) catalyst lined on cordierite monoliths[J]. Appl. Catal. B Environ., 2015, 162:551-563.
[71] KATHERIA S, DEO G, KUNZRU D. Washcoating of Ni/MgAl2O4 catalyst on FeCralloy monoliths for steam reforming of methane[J]. Energy Fuels, 2017, 31(3):3143-3153.
[72] SAITO M, KOJIMA J, IWAI H, et al. The limiting process in steam methane reforming with gas diffusion into a porous catalytic wall in a flow reactor[J]. Int. J. Hydrogen Energ., 2015, 40(29):8844-8855.
[73] BLAKELEY B, SULLIVAN N. Fuel processing in a ceramic microchannel reactor:expanding operating windows[J]. Int. J. Hydrogen Energ., 2016, 41(6):3794-3802.
[74] JIN M H, LEE C B, LEE D W, et al. Microchannel methane steam reformers with improved heat transfer efficiency and their long-term stability[J]. Fuel, 2016, 176:86-92.
[75] IRANKHAH A, RAHIMI M, REZAEI M. Performance research on a methane compact reformer integrated with catalytic combustion[J]. Chem. Eng. Technol., 2014, 37(7):1220-1226.
[76] PENNEMANN H, BELLINGHAUSEN R, WESTERMANN T, et al. Reforming of methane in a multistage microstructured reactor[J]. Chem. Eng. Technol., 2015, 38(10):1883-1893.
[77] ZHAI X, CHENG Y, ZHANG Z, et al. Steam reforming of methane over Ni catalyst in micro-channel reactor[J]. Int. J. Hydrogen Energ., 2011, 36(12):7105-7113.
[78] ZHANG N, CHEN X, CHU B, et al. Catalytic performance of Ni catalyst for steam methane reforming in a micro-channel reactor at high pressure[J]. Chem. Eng. Process., 2017, 118:19-25.
[79] CHU B, ZHANG N, ZHAI X, et al. Improved catalytic performance of Ni catalysts for steam methane reforming in a micro-channel reactor[J]. J. Energy Chem., 2014, 23(5):593-600.
[80] DING S, CHENG Y, CHENG Y. Experimental study and modeling analysis of catalytic partial oxidation of methane with addition of CO2 and H2O using a Rh-coated foam monolith reactor[J]. Ind. Eng. Chem. Res., 2011, 50(2):856-865.
[81] TEZCAN I, AVCI A K. Parametric investigation of oxidative coupling of methane in a heat-exchange integrated microchannel reactor[J]. J. Chem. Technol. Biotechnol., 2015, 90(10):1827-1838.
[82] PARK E D, LEE D, LEE H C. Recent progress in selective CO removal in a H2-rich stream[J]. Catal. Today, 2009, 139(4):280-290.
[83] KOPYSCINSKI J, SCHILDHAUER T J, BIOLLAZ S M A. Production of synthetic natural gas (SNG) from coal and dry biomass-a technology review from 1950 to 2009[J]. Fuel, 2010, 89(8):1763-1783.
[84] GHAIB K, NITZ K, BEN-FARES F Z. Chemical methanation of CO2:a review[J]. ChemBioEng Reviews, 2016, 3(6):266-275.
[85] GÖTZ M, LEFEBVRE J, MÖRS F, et al. Renewable Power-to-gas:a technological and economic review[J]. Renew. Energ., 2016, 85:1371-1390.
[86] 李军, 朱庆山, 李洪钟. 基于甲烷化反应的催化剂颗粒设计与过程强化[J]. 化工学报, 2015, 66(8):2773-2783. LI J, ZHU Q S, LI H Z. Process intensification and catalysts particle design for CO methanation[J]. CIESC Journal, 2015, 66(8):2773-2783.
[87] 林玉波. 合成氨生产工艺[M]. 2版. 北京:化学工业出版社, 2011:155-159. LIN Y B. Ammonia Synthesis Technologies[M]. 2nd ed. Beijing:Chemical Industry Press, 2011:155-159.
[88] ERCOLINO G, ASHRAF M A, SPECCHIA V, et al. Performance evaluation and comparison of fuel processors integrated with PEM fuel cell based on steam or autothermal reforming and on CO preferential oxidation or selective methanation[J]. Appl. Energy, 2015, 143:138-153.
[89] ASHRAF M A, ERCOLINO G, SPECCHIA S, et al. Final step for CO syngas clean-up:comparison between CO-PROX and CO-SMET processes[J]. Int. J. Hydrogen Energ., 2014, 39(31):18109-18119.
[90] 李志远, 米万良, 程庆, 等. 反应条件对甲烷化法去除重整氢气中CO的影响[J]. 化工学报, 2009, 60(10):2576-2582. LI Z Y, MI W L, CHENG Q, et al. Influence of reaction conditions on removal of CO in reformate by methanation method[J]. CIESC Journal, 2009, 60(10):2576-2582.
[91] GÖRKE O, PFEIFER P, SCHUBERT K. Highly selective methanation by the use of a microchannel reactor[J]. Catal. Today, 2005, 110(1):132-139.
[92] MEN Y, KOLB G, ZAPF R, et al. Selective methanation of carbon oxides in a microchannel reactor-primary screening and impact of gas additives[J]. Catal. Today, 2007, 125(1):81-87.
[93] MEN Y, KOLB G, ZAPF R, et al. Selective methanation of carbon monoxide in hydrogen-rich reformate using microstructured reactor[J]. Chem. Lett., 2009, 38(8):824-825.
[94] 董新法, 刘文跃, 高军, 等. 微通道反应器内CO的选择性甲烷化净化[J]. 华南理工大学学报(自然科学版), 2009, 37(12):44-48. DONG X F, LIU W Y, GAO J, et al. Purification of CO via selective methanation using microchannel reactor[J]. J. South China Univ. Techno. (Nat. Sci.), 2009, 37(12):44-48.
[95] 刘文跃, 董新法, 林维明. 微通道反应器内Ni-Ru/ZrO2催化剂上CO选择性甲烷化[J]. 石油化工, 2009, 38(7):711-715. LIU W Y, DONG X F, LIN W M. Selective methanation of CO over Ni-Ru/ZrO2 catalyst in microchannel reactor[J]. Petrochem. Techno., 2009, 38(7):711-715.
[96] 高军, 董新法, 林维明. 泡沫金属微反应器内富氢合成气中CO选择性甲烷化[J]. 燃料化学学报, 2010, 38(3):337-342. GAO J, DONG X F, LIN W M. Selective catalytic methanation of CO in hydrogen-rich gas with a metal foam microreactor[J]. J. Fuel Chem. Techno., 2010, 38(3):337-342.
[97] KIMURA M, MIYAO T, KOMORI S, et al. Selective methanation of CO in hydrogen-rich gases involving large amounts of CO2 over Ru-modified Ni-Al mixed oxide catalysts[J]. Appl. Catal. A Gen., 2010, 379(1/2):182-187.
[98] GALLETTI C, SPECCHIA S, SPECCHIA V. CO selective methanation in H2-rich gas for fuel cell application:microchannel reactor performance with Ru-based catalysts[J]. Chem. Eng. J., 2011, 167(2):616-621.
[99] LEE C B, CHO S H, LEE D W, et al. Combination of preferential CO oxidation and methanation in hybrid MCR (micro-channel reactor) for CO clean-up[J]. Energy, 2014, 78:421-425.
[100] 蔺华林, 李克健, 赵利军. 煤制天然气高温甲烷化催化剂研究进展[J]. 化工进展, 2011, 30(8):1739-1743. LIN H L, LI K J, ZHAO L J. Research progress of coal-based high temperature methanation catalyst for synthetic natural gas[J]. Chem. Ind. Eng. Prog., 2011, 30(8):1739-1743.
[101] LIU Z, CHU B, ZHAI X, et al. Total methanation of syngas to synthetic natural gas over Ni catalyst in a micro-channel reactor[J]. Fuel, 2012, 95:599-605.
[102] LI Y, ZHANG Q, CHAI R, et al. Ni-Al2O3/Ni-foam catalyst with enhanced heat transfer for hydrogenation of CO2 to methane[J]. AIChE J., 2015, 61(12):4323-4331.
[103] LI Y, ZHANG Q, CHAI R, et al. Structured Ni-CeO2-Al2O3/Ni-foam catalyst with enhanced heat transfer for substitute natural gas production by syngas methanation[J]. ChemCatChem, 2015, 7(9):1427-1431.
[104] BROOKS K P, HU J, ZHU H, et al. Methanation of carbon dioxide by hydrogen reduction using the Sabatier process in microchannel reactors[J]. Chem. Eng. Sci., 2007, 62(4):1161-1170.
[105] HOLLADAY J D, BROOKS K P, WEGENG R, et al. Microreactor development for Martian in situ propellant production[J]. Catal. Today, 2007, 120(1):35-44.
[106] PENNEMANN H, KOLB G. Review:microstructured reactors as efficient tool for the operation of selective oxidation reactions[J]. Catal. Today, 2016.
[107] ENGELBRECHT N, CHIUTA S, EVERSON R C, et al. Experimentation and CFD modelling of a microchannel reactor for carbon dioxide methanation[J]. Chem. Eng. J., 2017, 313:847-857.
[108] BELIMOV M, METZGER D, PFEIFER P. On the temperature control in a microstructured packed bed reactor for methanation of CO/CO2 mixtures[J]. AIChE J., 2017, 63(1):120-129.
[109] SCHMIDT L D, SIDDALL J, BEARDEN M. New ways to make old chemicals[J]. AIChE J., 2000, 46(8):1492-1495.
[110] 耿旺, 范延超. 北美页岩气化工产业链最新进展[J]. 石油化工, 2014, 43(9):1098-1104. GENG W, FAN Y C. The latest development of North America shale gas chemical industrial chain[J]. Petrochem. Techno., 2014, 43(9):1098-1104.
[111] NOVAKOVA E, WINTERTON N, JAROSCH K, et al. High-productivity dehydrogenation of light alkanes in a microchannel reactor[J]. Catal. Commun., 2005, 6(9):586-590.
[112] CARRERO C A, SCHLOEGL R, WACHS I E, et al. Critical literature review of the kinetics for the oxidative dehydrogenation of propane over well-defined supported vanadium oxide catalysts[J]. ACS Catal., 2014, 4(10):3357-3380.
[113] MAZANEC T, YUSCHAK T, LONG R, et al. Olefins by high intensity oxidation in microchannel reactors[C]//AIChE Spring Meeting and Global Congress on Process Safety.2007.
[114] YANG B, YUSCHAK T, MAZANEC T, et al. Multi-scale modeling of microstructured reactors for the oxidative dehydrogenation of ethane to ethylene[J]. Chem. Eng. J., 2008, 135:S147-S152.
[115] STEINFELDT N, BUYEVSKAYA O V, WOLF D, et al. Comparative studies of the oxidative dehydrogenation of propane in micro-channels reactor module and fixed-bed reactor[J]. Stud. Surf. Sci. Catal., 2001, 136:185-190.
[116] ZHANG Z, HAN L, CHAI R, et al. Microstructured CeO2-NiO-Al2O3/Ni-foam catalyst for oxidative dehydrogenation of ethane to ethylene[J]. Catal. Commun., 2017, 88:90-93.
[117] NGUYEN T T, BUREL L, NGUYEN D L, et al. Catalytic performance of MoVTeNbO catalyst supported on SiC foam in oxidative dehydrogenation of ethane and ammoxidation of propane[J]. Appl. Catal. A Gen., 2012, 433:41-48.
[118] CHU B, TRUTER L, NIJHUIS T A, et al. Oxidative dehydrogenation of ethane to ethylene over phase-pure M1 MoVNbTeOx catalysts in a micro-channel reactor[J]. Catal. Sci. Technol., 2015, 5(5):2807-2813.

[1] 郭婉婉, 李如月, 黄军. 交联菲罗啉负载铜催化剂用于合成三甲基苯醌[J]. 化工学报, 2019, 70(3): 929-936.
[2] 李德生, 张超, 邓时海, 胡智丰, 李金龙, 刘元辉. 基于铁基质高效催化还原污水中硝酸盐氮的实验研究[J]. 化工学报, 2019, 70(3): 1065-1074.
[3] 赫帅, 郭凤, 康国俊, 余剑, 任雪峰, 许光文. 络合-溶剂热法制备钯基催化剂及其催化氧化间二甲苯性能[J]. 化工学报, 2019, 70(3): 937-943.
[4] 唐铨, 郭杨龙, 詹望成, 郭耘, 王丽, 王筠松. 用于丙烷催化燃烧的PdxPty-ZSM-5/Cordierite整体式催化剂[J]. 化工学报, 2019, 70(3): 944-950.
[5] 王超, 李长明, 皇甫林, 李萍, 杨运泉, 高士秋, 余剑, 许光文. 赤泥催化剂的制备及其对模拟烟气中微量氨的脱除性能[J]. 化工学报, 2019, 70(3): 1056-1064.
[6] 李艳鹰, 李先春. 生物质活性炭负载零价铁纳米晶簇直接催化还原NO[J]. 化工学报, 2019, 70(3): 1111-1119.
[7] 段云彪, 徐存英, 王祥, 刘海, 黄梦婷. 反溶剂沉淀法合成Fe3+掺杂ZnO纳米结构及其可见光催化性能[J]. 化工学报, 2019, 70(3): 1198-1207.
[8] 梁天水, 王宗莹, 高坤, 李润婉, 王铮, 钟委, 赵军. 基于cup burner的含铁基添加剂超细水雾灭火有效性分析[J]. 化工学报, 2019, 70(3): 1236-1242.
[9] 白竣仁, 易军, 李倩, 吴凌, 陈雪梅. 面向反应再生过程的量子粒子群多目标优化[J]. 化工学报, 2019, 70(2): 750-756.
[10] 朱益, 王浩, 陈利平, 郭子超, 何中其, 陈网桦. 基于数值计算方法计算最大反应速率到达时间[J]. 化工学报, 2019, 70(1): 379-387.
[11] 陈琛, 王颖, 刘宏, 陈艳, 姚明东, 肖文海. 影响多步脱氢酶CrtI功能的关键结构特征探索[J]. 化工学报, 2019, 70(1): 189-198.
[12] 王婵娜, 刘令, 王慧华, 屈天鹏, 田俊, 王德永, 康振辉. Co-Fe-Pd纳米粒子的可控制备及其氧还原催化性能[J]. 化工学报, 2019, 70(1): 319-326.
[13] 谢静, 徐明益, 班帅, 孙晖, 周红军. 天然气内重整和外重整下SOFC多场耦合三维模拟分析[J]. 化工学报, 2019, 70(1): 214-226.
[14] 周刊, 李蔚, 李俊业, 朱华, 盛况, 白光辉, 常浩. 微细通道内超亲水改性表面饱和沸腾的传热特性[J]. 化工学报, 2018, 69(S2): 82-88.
[15] 徐肖肖, 陈龙, 肖久旻, 刘朝. 两相流在扁平T型管中压降特性的实验研究[J]. 化工学报, 2018, 69(S2): 174-179.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!