化工学报 ›› 2018, Vol. 69 ›› Issue (2): 555-562.doi: 10.11949/j.issn.0438-1157.20170900

• 热力学 • 上一篇    下一篇

超临界二氧化碳-共溶剂体系与聚醋酸乙烯酯相互作用

胡冬冬1, 包磊1, 刘涛1, 郎美东2, 赵玲1   

  1. 1 化学工程联合国家重点实验室, 华东理工大学, 上海 200237;
    2 华东理工大学材料科学与工程学院, 上海 200237
  • 收稿日期:2017-07-13 修回日期:2017-09-27 出版日期:2018-02-05 发布日期:2017-10-19
  • 通讯作者: 赵玲 E-mail:zhaoling@ecust.edu.cn
  • 基金资助:

    国家重点研发计划项目(2016YFB0302201);国家自然科学基金项目(21376087);中央高校基本科研业务费专项资助项目。

Interaction between supercritial carbon dioxide-cosolvent and poly(vinyl acetate)

HU Dongdong1, BAO Lei1, LIU Tao1, LANG Meidong2, ZHAO Ling1   

  1. 1 State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China;
    2 School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
  • Received:2017-07-13 Revised:2017-09-27 Online:2018-02-05 Published:2017-10-19
  • Supported by:

    supported by the National Key Research and Development Program of China (2016YFB0302201), the National Natural Science Foundation of China (21376087) and the Fundamental Research Funds for the Central Universities.

摘要:

采用多尺度模拟和实验结合研究了乙醇、丙酮、正庚烷等共溶剂的加入对超临界二氧化碳(CO2)溶剂体系的影响,通过改善溶剂-溶剂和溶剂-溶质相互作用增强聚醋酸乙烯酯(PVAc)与CO2的相容性。量子力学从头算结果表明,3种共溶剂中乙醇与CO2的相互作用最强,丙酮次之,正庚烷最弱。分子动力学模拟也表明在相同共溶剂含量下,乙醇对溶剂体系溶解度参数的改善最为明显,超临界CO2-乙醇体系与PVAc链的相互作用更强,有助于提高PVAc与溶剂的相容性。这是由于乙醇本身的溶解度参数较大,且与CO2形成氢键作用,从而大幅增强了其与CO2的相互作用。浊点压力实验证实了共溶剂的加入增强了超临界CO2体系与PVAc的相容性,乙醇的加入对PVAc浊点压力的降低最为有效,且随着共溶剂含量的增加,PVAc在溶剂中的溶解能力增强。

关键词: 二氧化碳, 共溶剂, 聚醋酸乙烯酯, 溶解性, 分子模拟

Abstract:

The effect of cosolvents (ethanol, acetone, n-heptane) on the supercritical CO2 system were evaluated through the multi-scale molecular modeling and dissolution behavior measurement, which might improve the solvent-solvent and solvent-solute interactions and enhance the compatibility with polymer. The ab initio calculation showed that the interaction between ethanol and CO2 was the strongest one, followed by that of acetone and n-heptane. The molecular dynamics simulations indicated that ethanol significantly increased the solubility parameter of solvent, and the interaction of supercritical CO2-ethanol with PVAc chain was stronger than that of the other two at the same co-solvent content, which was helpful to improve the compatibility between PVAc and the solvent. The interaction between ethanol and CO2 was the strongest due to the bigger solubility parameter of ethanol and the obvious hydrogen bond between ethanol and CO2.The cloud point experiments confirmed that ethanol was the most effective to reduce the cloud point pressure of PVAc. The addition of cosolvent enhanced the compatibility of supercritical CO2 system with PVAc, and the solubility of PVAc in supercritical CO2-cosolvent increased with the mole fraction of cosolvent.

Key words: carbon dioxide, cosolvent, poly (vinyl acetate), solubility, molecular simulation

中图分类号: 

  • TQ021.2

[1] TOMASKO D L, LI H, LIU D, et al. A review of CO2 applications in the processing of polymers[J]. Ind. Eng. Chem. Res., 2003, 42(25):6431-6456.
[2] NALAWADE S P, PICCHIONI F, JANSSEN L P. Supercritical carbon dioxide as a green solvent for processing polymer melts:Processing aspects and applications[J]. Prog. Polym. Sci., 2006, 31(1):19-43.
[3] WANG Y M, WANG Y J, LU X B. "Grafting-from" polymerization for uniformly bulk modification of pre-existing polymer materials via a supercritical-fluid route[J]. Polymer, 2008, 49(2):474-480.
[4] LI D C, LIU T, ZHAO L, et al. Controlling sandwich-structure of PET microcellular foams using coupling of CO2 diffusion and induced crystallization[J]. AIChE Journal, 2012, 58(8):2512-2523.
[5] LI L, LIU T, ZHAO L, et al. CO2-induced phase transition of isotactic poly-1-butene with form iii upon heating[J]. Macromolecules, 2011, 44(12):4836-4844.
[6] CUMMINGS S, XING D, ENICK R, et al. Design principles for supercritical CO2 viscosifiers[J]. Soft Matter, 2012, 8(26):7044-7055.
[7] BECKMAN E J. A challenge for green chemistry:designing molecules that readily dissolve in carbon dioxide[J]. Chem. Commun., 2004, 17:1885-1888.
[8] BIRKIN N A, WILDIG O J, HOWDLE S M. Effects of poly(vinyl pivalate)-based stabiliser architecture on CO2-solubility and stabilising ability in dispersion polymerisation of n-vinyl pyrrolidone[J]. Polym. Chem., 2013, 4(13):3791-3799.
[9] ENICK R M, OLSEN D K, AMMER J, et al. Mobility and conformance control for CO2 via thickeners, foams, and gels-a literature review of 40 years of research and pilot tests[C]//SPE Improved Oil Recovery Symposium. Tulsa, USA:Society of Petroleum Engineers, 2012.
[10] DUAN D, SU B G, ZHANG Z, et al. Synthesis, characterization and structure effects of polyethylene glycol bis(2-isopro poxyethyl)dimethyl diphosphates on lanthanides extraction with supercritical carbon dioxide[J]. J. Supercrit. Fluid., 2013, 81:103-111.
[11] GIRARD E, TASSAING T, CAMY S, et al. Enhancement of poly(vinyl ester) solubility in supercritical CO2 by partial fluorination:the key role of polymer-polymer interactions[J]. J. Am. Chem. Soc., 2012, 134(29):11920-11923.
[12] SHEN Z, MCHUGH M A, XU J, et al. CO2-solubility of oligomers and polymers that contain the carbonyl group[J]. Polymer, 2003, 44(5):1491-1498.
[13] DOBBS J, WONG J, LAHIERE R, et al. Modification of supercritical fluid phase behavior using polar cosolvents[J]. Ind. Eng. Chem. Res., 1987, 26(1):56-65.
[14] GUPTA R B, COMBES J R, JOHNSTON K P. Solvent effect on hydrogen bonding in supercritical fluids[J]. J. Phys. Chem., 1993, 97(3):707-715.
[15] STUBBS J M, SIEPMANN J I. Binary phase behavior and aggregation of dilute methanol in supercritical carbon dioxide:a Monte Carlo simulation study[J]. J. Chem. Phys., 2004, 121(3):1525-1534.
[16] CHATZIS G, SAMIOS J. Binary mixtures of supercritical carbon dioxide with methanol:a molecular dynamics simulation study[J]. Chem. Phys. Lett., 2003, 374(1):187-193.
[17] 张阳. 分子模拟在纯超临界流体及其二元混合物体系中的应用[D]. 北京:清华大学, 2005. ZHANG Y. Molecular simulation for pure supercritical fluids and their binary mixtures[D]. Beijing:Tsinghua University, 2005.
[18] 汪孟艳. 超临界二氧化碳体系溶解度参数的分子动力学模拟研究[D]. 天津:天津大学, 2007. WANG M Y. Study on solubility parameters of supercritical carbon dioxide by molecular dynamics simulation[D]. Tianjin:Tianjin University, 2007.
[19] FELLER D, JORDAN K D. Estimating the strength of the water/single-layer graphite interaction[J]. J. Phys. Chem. A, 2000, 104(44):9971-9975.
[20] WANG Y, HONG L, TAPRIYAL D, et al. Design and evaluation of nonfluorous CO2-soluble oligomers and polymers[J]. J. Phys. Chem. B, 2009, 113(45):14971-14980.
[21] HU D, SUN S, YUAN P Q, et al. Evaluation of CO2-philicity of poly(vinyl acetate) and poly(vinyl acetate-alt-maleate) copolymers through molecular modeling and dissolution behavior measurement[J]. J. Phys. Chem. B, 2015, 119(7):3194-3204.
[22] SUN H. Compass:an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds[J]. J. Phys. Chem. B, 1998, 102(38):7338-7364.
[23] HU D, SUN S, YUAN P Q, et al. Exploration of CO2-philicity of poly(vinyl acetate-co-alkyl vinyl ether) through molecular modeling and dissolution behavior measurement[J]. J. Phys. Chem. B, 2015, 119(38):12490-12501.
[24] LEE H, PACK J W, WANG W, et al. Synthesis and phase behavior of CO2-soluble hydrocarbon copolymer:poly(vinyl acetate-alt-dibutyl maleate)[J]. Macromolecules, 2010, 43(5):2276-2282.
[25] GIRARD E, TASSAING T, LADAVIÈRE C, et al. Distinctive features of solubility of RAFT/madix-derived partially trifluoromethylated poly(vinyl acetate) in supercritical CO2[J]. Macromolecules, 2012, 45(24):9674-9681.
[26] INGROSSO F, RUIZLÓPEZ M F. Modeling solvation in supercritical CO2[J]. ChemPhysChem, 2017, DOI:10.1002/cphc.201700434.
[27] FU Y, LIAO L, YANG L, et al. Molecular dynamics and dissipative particle dynamics simulations for prediction of miscibility in polyethylene terephthalate/polylactide blends[J]. Mol. Simulat., 2013, 39(5):415-422.
[28] 付一政, 廖黎琼, 梁晓艳, 等. PP/PA11共混物微、介观形态的分子模拟[J]. 化工学报, 2012, 63(6):1951-1956. FU Y Z, LIAO L Q, LIANG X Y, et al. Molecular simulations of microstructures and phase morphologies of polypropylene/polyamide-11 blends[J]. CIESC Journal, 2012, 63(6):1951-1956.
[29] CLANCY T C, MATTICE W L. Miscibility of poly(vinyl chloride) melts composed of mixtures of chains with differing stereochemical composition and stereochemical sequence[J]. Macromolecules, 2001, 34(18):6482-6486.
[30] RAVEENDRAN P, WALLEN S L. Cooperative C-H…O hydrogen bonding in CO2-Lewis base complexes:implications for solvation in supercritical CO2[J]. J. Am. Chem. Soc., 2002, 124(42):12590-12599.ide blends[J]. Mol. Simulat., 2013, 39(5):415-422.
[28] 付一政, 廖黎琼, 梁晓艳, 等. PP/PA11共混物微、介观形态的分子模拟[J]. 化工学报, 2012, 63(6):1951-1956. FU Y, LIAO L, LIANG X, et al. Molecular simulations of microstructures and phase morphologies of polypropylene/polyamide-11 blends[J]. CIESC Journal, 2012, 63(6):1951-1956.
[29] CLANCY T C, MATTICE W L. Miscibility of poly(vinyl chloride) melts composed of mixtures of chains with differing stereochemical composition and stereochemical sequence[J]. Macromolecules, 2001, 34(18):6482-6486.
[30] RAVEENDRAN P, WALLEN S L. Cooperative C-H…O hydrogen bonding in CO2-Lewis base complexes:implications for solvation in supercritical CO2[J]. J. Am. Chem. Soc., 2002, 124(42):12590-12599.

 

[1] 于旭东, 黄琴, 王林, 李茂兰, 郑洪, 曾英. KCl-PEG4000-H2O三元体系288、298、308 K相平衡测定及计算[J]. 化工学报, 2019, 70(3): 830-839.
[2] 王磊, 方桂英, 阳庆元. 金属-有机骨架材料CO2捕获性能的大规模计算筛选[J]. 化工学报, 2019, 70(3): 1135-1143.
[3] 梁馨元, 张磊, 刘琳琳, 都健. 基于分子动力学的橡胶聚合物计算机辅助设计方法[J]. 化工学报, 2019, 70(2): 525-532.
[4] 朱顺, 郭琦, 张大伟, 杨庆春. 集成CO2高效利用的煤制乙二醇过程设计与系统分析[J]. 化工学报, 2019, 70(2): 772-779.
[5] 穆瑞, 乐高杨, 杨慧中. 基于O3/UV法在线COD检测的气体溶解量估计方法[J]. 化工学报, 2019, 70(2): 730-735.
[6] 刘忠彦, 孙大汉, 金旭, 王天皓, 马一太. CO2管内流动沸腾换热模型评价研究[J]. 化工学报, 2019, 70(1): 56-64.
[7] 蔡惊涛, 李代禧, 刘宝林, 栾翰森, 郭柏松, 魏冬青, 王浩. 尿素(520)晶面可控结晶的分子动力学模拟[J]. 化工学报, 2019, 70(1): 128-135.
[8] 王财林, 顾帅威, 李玉星, 胡其会, 滕霖, 王婧涵, 马宏涛, 张大同. CO2-原油体系发泡特性实验研究[J]. 化工学报, 2019, 70(1): 251-260.
[9] 向文军, 朱朝菊, 刘丹, 周绿山. 分子动力学模拟研究两亲聚合物与疏水纳米粒子自组装核-壳结构[J]. 化工学报, 2019, 70(1): 345-354.
[10] 李静岩, 刘中良, 周宇, 李艳霞. CO2羽流地热系统热开采过程热流固耦合模型及数值模拟研究[J]. 化工学报, 2019, 70(1): 72-82.
[11] 孙艳军, 邸高雷, 夏娟, 王晓坡, 金立文. 以离子液体为吸收剂的吸收式制冷循环热力学分析[J]. 化工学报, 2018, 69(S2): 38-44.
[12] 林励冠, 代彦军, Hafner Armin. 两级R744超市中央制冷系统节能特性[J]. 化工学报, 2018, 69(S2): 394-401.
[13] 谢华清, 张卫东, 林贺勇, 于庆波. 吸附强化焦油蒸汽重整制取氢气[J]. 化工学报, 2018, 69(S2): 466-472.
[14] 杜东兴, 郑利晨, 张旭, 孙国龙, 李莺歌, 巢昆. 多孔介质内超临界CO2流体及泡沫驱油特性的比较实验研究[J]. 化工学报, 2018, 69(S1): 58-63.
[15] 徐令君, 王淑娟. [Bmim][BF4]/MEA混合水溶液的CO2汽液平衡和解吸能耗分析[J]. 化工学报, 2018, 69(9): 3879-3886.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曹兴,杜文静,程林. 连续螺旋折流板换热器流动与传热性能及熵产分析[J]. 化工学报, 2012, 63(8): 2375 -2382 .
[2] 张兰河,李军,郭静波,贾艳萍,张海丰. EPS对活性污泥絮凝沉降性能与表面性质的影响[J]. 化工学报, 2012, 63(6): 1865 -1871 .
[3] 陈卫东, 孙彦. 吸附密度对蛋白质在离子交换吸附剂中孔扩散系数的影响 [J]. 化工学报, 2003, 54(2): 215 -220 .
[4] 周新建, 陈听宽. 引射喷嘴流量系数的计算方法 [J]. 化工学报, 2002, 53(10): 1092 -1094 .
[5] 孙庆雷, 李文, 李保庆. 神木煤热解的挥发分收率与岩相组成的关系 [J]. 化工学报, 2003, 54(2): 269 -272 .
[6] 刘唐, 骞伟中, 汪展文, 魏飞, 金涌, 李俊诚, 李永丹. 流化床中甲烷催化裂解制备碳纳米管和氢气 [J]. 化工学报, 2003, 54(11): 1614 -1618 .
[7] 赵宗彬, 李文, 李保庆. 矿物质对煤焦燃烧过程中NO释放规律的影响 [J]. 化工学报, 2003, 54(1): 100 -106 .
[8] 李瑞, 许春建, 曾爱武, 周明. 精馏塔板上双液层三维模型的流体力学计算 [J]. 化工学报, 2003, 54(2): 159 -163 .
[9] 詹水清1,周孑民1,吴烨2,李远1,梁艳南1,杨莺1. 高温熔盐热物性的动态测定与误差修正方法[J]. 化工学报, 2012, 63(8): 2341 -2347 .
[10] 韩佳宾, 王静康. 咖啡因在水和乙醇中的溶解度及其关联 [J]. 化工学报, 2004, 55(1): 125 -128 .