化工学报 ›› 2018, Vol. 69 ›› Issue (2): 570-577.doi: 10.11949/j.issn.0438-1157.20170774

• 热力学 • 上一篇    下一篇

二元混合溶剂对盐酸硫胺溶剂化物稳定性及晶习的影响

杨洋1,2, 王海生3, 刘玉敏1,2, 韩丹丹1,2, 王静康1,2, 龚俊波1,2   

  1. 1 化学工程联合国家重点实验室, 天津大学化工学院, 天津 300072;
    2 天津化学工程协同创新中心, 天津 300072;
    3 武汉经济技术开发区(汉南区)安监局, 湖北 武汉 430090
  • 收稿日期:2017-06-15 修回日期:2017-09-29 出版日期:2018-02-05 发布日期:2017-10-19
  • 通讯作者: 龚俊波 E-mail:junbo_gong@tju.edu.cn
  • 基金资助:

    国家高技术研究发展计划项目(2015AA021002)。

Effect of binary solvent mixtures on stability and morphology of thiamine hydrochloride solvate

YANG Yang1,2, WANG Haisheng3, LIU Yumin1,2, HAN Dandan1,2, WANG Jingkang1,2, GONG Junbo1,2   

  1. 1 State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;
    2 The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, China;
    3 Wuhan Economic and Technological Development Zone(Hannan District) Safety Supervision Bureau, Wuhan 430090, Hubei, China
  • Received:2017-06-15 Revised:2017-09-29 Online:2018-02-05 Published:2017-10-19
  • Supported by:

    supported by the National High Technology Research and Devolopment Program of China(2015AA021002).

摘要:

维生素B1是人体必需的营养物质之一,盐酸硫胺作为维生素B1的存在形式,因其空间结构不同有着不同稳定性的4种溶剂化物:盐酸硫胺半水合物(HH)、盐酸硫胺甲醇溶剂化物(MM)、非化学计量比的盐酸硫胺水合物(NSH)、无水盐酸硫胺(AH)。制药行业致力于寻找一种相对稳定的盐酸硫胺,以便于生产、储存和运输。采用悬浮转晶的方法制备了4种盐酸硫胺溶剂化物,从分子层次探究4种溶剂化物的稳定性,得出盐酸硫胺半水合物因其内部强氢键作用力而最稳定的结论。同时,探讨了二元混合溶剂对盐酸硫胺4种溶剂化物稳定性的影响,确定了不同溶剂化物稳定存在的适宜条件。采用BFDH模型模拟了盐酸硫胺甲醇溶剂化物的晶习,发现BFDH模型的模拟结果与实际晶习一致,为工业溶剂筛选以获得目标产品提供理论指导。

关键词: 盐酸硫胺, 溶剂化物, 稳定性, 溶剂, 转化, 分子模拟

Abstract:

Vitamin B1 is one of the most essential nutrients in human bodies. Thiamine hydrochloride, a form of vitamin B1, has four solvates, hemihydrate (HH), methanol solvates (MM), nonstoichiometric hydrate (NSH), and anhydrous form (AH). These four solvates have different stabilities because of different space structures. In that way, a stable solvate which has better properties of production, storage and transportation is investigated by drug industry. In this paper, X-ray diffraction and thermal analysis were measured and crystal form transformation experiments in methanol-water and methanol-ethyl acetate were investigated. It can be seen that hydrate hemihydrate is more stable because of hydrogen bonds. Moreover, molecular dynamics simulation by using BFDH and AE model of MM in methanol-ethyl acetate binary solvent mixtures was calculated. The result shows that BFDH model matches real crystal habit, which could guide industrial production.

Key words: thiamine hydrochloride, polymorphs, stability, solvent, transformation, molecular simulation

中图分类号: 

  • TQ201.2

[1] KHANKARI R K, GRANT D J W. Pharmaceutical hydrates[J]. Thermochimica Acta, 1995, 248(1):61-79.
[2] CHAKRAVARTY P, SURYANARAYANAN R. Characterization and structure analysis of thiamine hydrochloride methanol solvate[J]. Crystal Growth & Design, 2010, 10(10):4414-4420.
[3] GRIESSER U J. Chapter 8. The importance of solvate[M]//Polymorphism in the Pharmaceutical Industry, 2006:211-233.
[4] CHAKRAVARTY P, BERENDT R T, MUNSON E J, et al. Insights into the dehydration behavior of thiamine hydrochloride (vitamin B1) hydrates[J]. Journal of Pharmaceutical Sciences, 2010, 99(2):816-827.
[5] RUTH L T, ULRICH J G, KENNETH R M, et al. X-ray diffraction and solid-state nmr investigation of the single-crystal to single-crystal dehydration of thiamine hydrochloride monohydrate[J]. Crystal Growth & Design, 2003, 3(6):997-1004.
[6] WATANABE A, NAKAMACHI H. Polymorphism of thiamine hydrochloride (author's transl)[J]. Yakugaku Zasshi Journal of the Pharmaceutical Society of Japan, 1976, 96(10):1236-1240.
[7] RODRÍGUEZ-HORNEDO N, LECHUGA-BALLESTEROS D, WU H J. Phase transition and heterogeneous/epitaxial nucleation of hydrated and anhydrous theophylline crystals[J]. International Journal of Pharmaceutics, 1992, 85(1/2/3):149-162.
[8] RANI M, GOVINDARAJAN R, SURANA R, et al. Structure in dehydrated trehalose dihydrate-evaluation of the concept of partial crystallinity[J]. Pharmaceutical Research, 2006, 23(10):2356-2367.
[9] EYRING H. Chemistry of the Solid State[M]. Butterworths Scientific Publications, 1955.
[10] BRENNER G, ROBERTS F E, HOINOWSKI A, et al. Effect of crystalline form on the air-oxidation of steroidal 11β-ols to 11-ones[J]. Angewandte Chemie International Edition, 1969, 8(12):975-976.
[11] GIORDANO F. Polymorphism in pharmaceutical solids:edited by Harry G. Brittain, Marcel Dekker, New York, 1999, 427 pp[J]. Journal of Controlled Release, 2001, 71(3):354-355.
[12] ZHU H J, YOUNG V G JR, GRANT D J. Crystal structure and thermal behavior of nedocromil nickel octahydrate[J]. International Journal of Pharmaceutics, 2002, 232(1/2):23-33.
[13] ZHU H J, YOUNG V G JR, GRANT D J. Crystal structures and thermal analysis of nedocromil bivalent metal salt hydrates[J]. Journal of Chemical Crystallography, 2001, 31(9):421-434.
[14] SHETH A R, ZHOU D, MULLER F X, et al. Dehydration kinetics of piroxicam monohydrate and relationship to lattice energy and structure[J]. Journal of Pharmaceutical Sciences, 2004, 93(12):3013-3026.
[15] REUTZEL S M, RUSSELL V A. Origins of the unusual hygroscopicity observed in LY297802 tartrate[J]. Journal of Pharmaceutical Sciences, 1998, 87(12):1568-1571.
[16] KLIMAKOW M, LEITERER J, KNEIPP J, et al. Combined synchrotron XRD/Raman measurements:in situ, identification of polymorphic transitions during crystallization processes[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2010, 26(13):11233-11237.
[17] SCHMIDT C, ULRICH J. Morphology prediction of crystals grown in the presence of impurities and solvents-an evaluation of the state of the art[J]. Journal of Crystal Growth, 2012, 353(1):168-173.
[18] SCHMIDT C, YÜRÜDÜ C, WACHSMUTH A, et al. Modeling the morphology of benzoic acid crystals grown from aqueous solution[J]. Crystengcomm, 2011, 13(4):1159-1169.
[19] LAHAV M, LEISEROWITZ L. The effect of solvent on crystal growth and morphology[J]. Chemical Engineering Science, 2001, 56(7):2245-2253.
[20] NIEHÖRSTER S, ULRICH J. Designing crystal morphology by a simple approach[J]. Crystal Research & Technology, 2010, 30(3):389-395.
[21] MATTOS M, NIEHOERSTER S, WANGNICK K, et al. Comparison between theoretical and experimental results of habit modification of crystalline stabilizers for foods[J]. Journal of Mechanical Engineering, 2011, 41(2):4169-4177.
[22] LIU N, LI Y N, ZEMAN S, et al. Crystal morphology of 3,4-bis(3-nitrofurazan-4-yl)furoxan (DNTF) in a solvent system:molecular dynamics simulation and sensitivity study[J]. Crystengcomm, 2016, 18(16):2843-2851.
[23] ZHANG C, PENG Q, WANG L, et al. Thermal sensitivity of HMX crystals and HMX-based explosives treated under various conditions[J]. Propellants Explosives Pyrotechnics, 2010, 35(6):561-566.
[24] MANNER V W, TAPPAN B C, SCOTT B L, et al. Crystal structure, packing analysis, and structural-sensitivity correlations of erythritol tetranitrate[J]. Crystal Growth & Design, 2014, 14(11):6154-6160.
[25] CZERSKI H, PROUD W G. Relationship between the morphology of granular cyclotrimethylene-trinitramine and its shock sensitivity[J]. Journal of Applied Physics, 2007, 102(11):837-840.
[26] ZHOU Q, CHEN Z Q, ZHENG C M, et al. Effect of morphology of FOX-7 crystals on its sensitivity[J]. Chinese Journal of Explosives & Propellants, 2014, 37(5):67-69, 76.
[27] HOD I, MASTAI Y, MEDINA D D. Effect of solvents on the growth morphology of DL-alanine crystals[J]. Crystengcomm, 2010, 13(2):502-509.
[28] SINGH M K, BANERJEE A, GUPTA P K. Role of molecular orientation and surface relaxation on vapor growth shape of molecular crystals[J]. Crystal Growth & Design, 2012, 12(2):732-741.
[29] URBELIS J H, SWIFT J A. Solvent effects on the growth morphology and phase purity of CL-20[J]. Crystal Growth & Design, 2014, 14(4):1642-1649.
[30] DUAN X, WEI C, LIU Y, et al. A molecular dynamics simulation of solvent effects on the crystal morphology of HMX[J]. Journal of Hazardous Materials, 2010, 174(1/2/3):175-180.
[31] MIROSHNYK I, KHRIACHTCHEV L, MIRZA S, et al. Insight into thermally induced phase transformations of erythromycin A dihydrate[J]. Crystal Growth & Design, 2006, 6(2):369-374.
[32] LESTER C, LUBEY G, DICKS M G, et al. Dehydration of risedronate hemi-pentahydrate:analytical and physical characterization[J]. Journal of Pharmaceutical Sciences, 2006, 95(12):2631-2644.
[33] CHEN L R, YOUNG V G J, LECHUGA-BALLESTEROS D, et al. Solid-state behavior of cromolyn sodium hydrates[J]. Journal of Pharmaceutical Sciences, 1999, 88(11):1191-1200.
[34] WATANABE A, TASAKI S, WADA Y, et al. Polymorphism of thiamine hydrochloride(Ⅱ):Crystal structure of thiamine hydrochloride hemihydrate and its stability[J]. Chemical & Pharmaceutical Bulletin, 1979, 27(11):2751-2759.

[1] 骆枫, 林力, 李振臣, 李文钰, 陈先林, 沙沙, 罗涛. 生物质的电化学转化反应及反应器[J]. 化工学报, 2019, 70(3): 801-816.
[2] 于旭东, 黄琴, 王林, 李茂兰, 郑洪, 曾英. KCl-PEG4000-H2O三元体系288、298、308 K相平衡测定及计算[J]. 化工学报, 2019, 70(3): 830-839.
[3] 徐奇超, 江锦波, 彭旭东, 李纪云, 王玉明. 基于遗传算法的干气密封双向槽统一模型与参数优化[J]. 化工学报, 2019, 70(3): 995-1005.
[4] 张兰河, 张明爽, 郭静波, 贾艳萍, 李正, 陈子成. Fe3+在A2O工艺缺氧区的转化规律及其对污泥絮凝性的影响[J]. 化工学报, 2019, 70(3): 1089-1098.
[5] 赫帅, 郭凤, 康国俊, 余剑, 任雪峰, 许光文. 络合-溶剂热法制备钯基催化剂及其催化氧化间二甲苯性能[J]. 化工学报, 2019, 70(3): 937-943.
[6] 王磊, 方桂英, 阳庆元. 金属-有机骨架材料CO2捕获性能的大规模计算筛选[J]. 化工学报, 2019, 70(3): 1135-1143.
[7] 段云彪, 徐存英, 王祥, 刘海, 黄梦婷. 反溶剂沉淀法合成Fe3+掺杂ZnO纳米结构及其可见光催化性能[J]. 化工学报, 2019, 70(3): 1198-1207.
[8] 梁馨元, 张磊, 刘琳琳, 都健. 基于分子动力学的橡胶聚合物计算机辅助设计方法[J]. 化工学报, 2019, 70(2): 525-532.
[9] 刘奇磊, 冯锟, 刘琳琳, 都健, 孟庆伟, 张磊. 基于Dragon描述符与改进的决策树-遗传算法的反应溶剂设计方法[J]. 化工学报, 2019, 70(2): 533-540.
[10] 鲁春燕, 李炜. 基于深度置信网络的炼化空压机故障诊断方法[J]. 化工学报, 2019, 70(2): 757-763.
[11] 蔡惊涛, 李代禧, 刘宝林, 栾翰森, 郭柏松, 魏冬青, 王浩. 尿素(520)晶面可控结晶的分子动力学模拟[J]. 化工学报, 2019, 70(1): 128-135.
[12] 周孙希, 章学来, 刘升, 陈启杨, 徐笑锋, 王迎辉. 癸醇-棕榈酸/膨胀石墨低温复合相变材料的制备与性能[J]. 化工学报, 2019, 70(1): 290-297.
[13] 朱益, 王浩, 陈利平, 郭子超, 何中其, 陈网桦. 基于数值计算方法计算最大反应速率到达时间[J]. 化工学报, 2019, 70(1): 379-387.
[14] 向文军, 朱朝菊, 刘丹, 周绿山. 分子动力学模拟研究两亲聚合物与疏水纳米粒子自组装核-壳结构[J]. 化工学报, 2019, 70(1): 345-354.
[15] 段亚强, 何险峰, 武桐, 张燕萍, 赵志国. 极压石墨烯润滑油添加剂的制备与应用[J]. 化工学报, 2019, 70(1): 360-369.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!