化工学报 ›› 0, Vol. ›› Issue (): 3638-3644.doi: 10.11949/j.issn.0438-1157.20170272

• 材料化学工程与纳米技术 • 上一篇    

核壳结构α-Fe2O3锂离子电池阳极材料制备及应用(已撤稿)

郭志超, 张丽伟, 程素君   

  1. 新乡学院物理与电子工程学院, 河南 新乡 453003
  • 收稿日期:2017-03-21 修回日期:2017-05-26 出版日期:2017-05-26 发布日期:2017-05-26
  • 通讯作者: 郭志超 E-mail:guozhichao610@sina.com
  • 基金资助:

    高等学校重点科研项目(17A140026);新乡市科技创新发展专项计划资助项目(CXGG16033)。

Preparation and application of core shell structure α-Fe2O3 anode material for lithium ion battery

GUO Zhichao, ZHANG Liwei, CHENG Sujun   

  1. College of Physics and Electronic Engineering, Xinxiang University, Xinxiang 453003, Henan, China
  • Received:2017-03-21 Revised:2017-05-26 Online:2017-05-26 Published:2017-05-26
  • Contact: 10.11949/j.issn.0438-1157.20170272 E-mail:guozhichao610@sina.com
  • Supported by:

    supported by the Key Scientific Research Project of Higher Education (17A140026) and the Xinxiang Science and Technology Innovation&Development Plan (CXGG16033).

摘要:

以甘氨酸作为结构导向剂,通过一步合成溶剂热法制备了新型的胶体核壳结构α-Fe2O3。胶体核壳α-Fe2O3的结构单元(壳和核)是纳米盘状的α-Fe2O3,而纳米盘由α-Fe2O3纳米粒子组成。以制备的核壳结构材料作为锂离子电池阳极材料的活性物质,组装成锂离子电池进行测试,电池在180圈循环时仍具有1437.2 mA·h·g-1的放电比容量和1425.7 mA·h·g-1的充电比容量,表明核壳α-Fe2O3胶体呈现出高的锂存储容量和倍率性能。独特的核壳状胶体结构,较大的活性物质与电解液接触面积和快速的锂离子扩散能力可能是该材料具有优异性能的关键因素。

关键词: 纳米粒子, 胶体, 活化, α-Fe2O3, 锂离子电池

Abstract:

In order to improve the practical application of nanostructured as the anode materials for lithium ion batteries, a novel core-shell α-Fe2O3 colloidosome was successfully synthesized via one-step hydrothermal method, glycine was used as the structure directing agent in the preparation process. The core-shell α-Fe2O3 colloidosomes were assembled by α-Fe2O3 nanoplates, which were composed of α-Fe2O3 nanoparticles. The α-Fe2O3 nanoplates are the building blocks of three dimensional superstructure. The prepared material was used as the activator of the anode material for lithium ion batteries. When testified as Li-ion battery anode, 3D core-shell α-Fe2O3 exhibited amazing specific capacities and excellent cyclabilities, the battery still has a 1437.2 mA·h·g-1 discharge capacity and a charge capacity of 1425.7 mA·h·g-1 in the 180 cycle. The unique core-shell colloid structure, the larger contact area of the active material and the electrolyte, and the rapid lithium ion diffusion ability may be the key factors for the excellent performance of the material.

Key words: nanoparticles, colloid, activation, α-Fe2O3, lithium ion battery

中图分类号: 

  • TN386.1

[1] CUI C, LI X, HU Z, et al. Growth of MoS2@C nanobowls as a lithium-ion battery anode material[J]. RSC Advances, 2015, 5(112):92506-92514.
[2] ZHAO W, DU N, ZHANG H, et al. A novel Co-LiO@Si core-shell nanowire array composite as a high performance lithium-ion battery anode material[J]. Nanoscale, 2016, 8(8):4511-4519.
[3] ZHANG H, LI X, GUO H, et al. Hollow Si/C composite as anode material for high performance lithium-ion battery[J]. Powder Technology, 2016, 299:178-184.
[4] CHEN X, LI L, WANG S, et al. Synthesis and electrochemical performances of MoS2/C fibers as anode material for lithium-ion battery[J]. Materials Letters, 2016, 164(12):595-598.
[5] CHEN X, LI L, WANG S, et al. 3D nanostructured multilayer Si/Al film with excellent cycle performance as anode material for lithium-ion battery[J]. Journal of Alloys & Compounds, 2016, 657:559-564.
[6] BAI J, LI X, LIU G, et al. Unusual formation of ZnCo2O4, 3D hierarchical twin microspheres as a high-rate and ultralong-life lithium-ion battery anode material[J]. Advanced Functional Materials, 2014, 24(20):3012-3020.
[7] ZHAO T, SHE S, JI X, et al. In-situ growth amorphous carbon nanotube on silicon particles as lithium-ion battery anode materials[J]. Journal of Alloys & Compounds, 2017, 708:500-507.
[8] LIAN P, WANG J, CAI D, et al. Porous SnO2@C/graphene nanocomposite with 3D carbon conductive network as a superior anode material for lithium-ion batteries[J]. Electrochimica Acta, 2014, 116(2):103-110.
[9] WANG Y, LI D, LIU Y, et al. Self-assembled 3D ZnSnO3, hollow cubes@reduced graphene oxide aerogels as high capacity anode materials for lithium-ion batteries[J]. Electrochimica Acta, 2016, 203:84-90.
[10] ZHENG X, LV W, HE Y B, et al. 3D hollow Sn@carbon-graphene hybrid material as promising anode for lithium-ion batteries[J]. Journal of Nanomaterials, 2014, 2014(4):1-6.
[11] FANG Z, QIANG T, FANG J, et al. 3D hollow framework of GeOx, with ultrathin shell for improved anode performance in lithium-ion batteries[J]. Electrochimica Acta, 2015, 151:453-458.
[12] FAN X, SHAO J, XIAO X, et al. Carbon encapsulated 3D hierarchical Fe3O4 spheres as advanced anode materials with long cycle lifetimes for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(35):14641-14648.
[13] LI Z, ZHAO H, WANG J, et al. 3D heterostructure Fe3O4/Ni/C nanoplate arrays on Ni foam as binder-free anode for high performance lithium-ion battery[J]. Electrochimica Acta, 2015, 182:398-405.
[14] XU J S, ZHU Y J. Monodisperse Fe3O4 and γ-Fe2O3 magnetic mesoporous microspheres as anode materials for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2012, 4(9):4752-4759.
[15] WANG G, LIU T, LUO Y. Preparation of Fe2O3/graphene composite and its electrochemical performance as an anode material for lithium ion batteries[J]. Journal of Alloys & Compounds, 2011, 509(24):216-220.
[16] ZHU Y, BAI Y J, HAN F D. One-step preparation of six-armed Fe3O4, dendrites with carbon coating applicable for anode material of lithium-ion battery[J]. Materials Letters, 2011, 65(19):3157-3159.
[17] ZHANG X, HU Z, XIAO X. Fe3O4@porous carbon hybrid as the anode material for a lithium-ion battery:performance optimization by composition and microstructure tailoring[J]. New Journal of Chemistry, 2015, 39(5):3435-3443.
[18] QIN F, ZHANG K, ZHANG L. Sustainable synthetic route for γ-Fe2O3/C hybrid as anode material for lithium-ion batteries[J]. Dalton Transactions, 2015, 44(5):2150-2156.
[19] HAN F, MA L, SUN Q, et al. Rationally designed carbon-coated Fe3O4, coaxial nanotubes with hierarchical porosity as high-rate anodes for lithium ion batteries[J]. Nano Research, 2014, 7(11):1706-1717.
[20] PENKI T R, SHIVAKUMARA S, MINAKSHI M. Porous flower-like alpha-Fe2O3 nanostructure:a high performance anode material for lithium-ion batteries[J]. Electrochimica Acta, 2015, 167:330-339.
[21] ZHANG S, ZHANG P, XIE A, et al. A novel 2D porous print fabric-like α-Fe2O3, sheet with high performance as the anode material for lithium-ion battery[J]. Electrochimica Acta, 2016, 212:912-920.
[22] ABHIJIT A Y. Preparation and electrochemical properties of spray deposited α-Fe2O3 from nonaqueous medium for supercapacitor applications[J]. Journal of Materials Science, 2016, 27(12):12876-12883.
[23] CAI D, LI D, DING L X. Interconnected α-Fe2O3, nanosheet arrays as high-performance anode materials for lithium-ion batteries[J]. Electrochimica Acta, 2016, 192:407-413.
[24] 刘朋飞, 张所灜, 杨祝红, 等. MOF作模板制备多孔Au/CuxO催化剂及其CO氧化性能[J]. 化工学报, 2016, 67(6):2325-2331. LIU P F, ZHANG S Y, YANG Z H, et al. MOF-templated preparation of porous Au/CuxO catalysts with octahedral structures for CO oxidation[J]. CIESC Journal, 2016, 67(6):2325-2331.
[25] 赵兵, 王志轩, 陈卢, 等. 利用表面改性制备磷酸锰锂/石墨烯锂离子电池复合材料[J]. 化工学报, 2016, 67(11):4779-4786. ZHAO B, WANG Z X, CHEN L, et al. LiMnPO4/graphene nanocomposites with high electrochemical performance for lithium-ion batteries[J]. CIESC Journal, 2016, 67(11):4779-4786.
[26] GUAN X, LI G. Synthesis of porous nano/micro structured LiFePO4/C cathode materials for lithium-ion batteries by spray-drying method[J]. Transactions of Nonferrous Metals Society of China, 2017, 27:141-147.
[27] CHO J S, PARK J S, KANG Y C. Preparation of hollow Fe2O3 nanorods and nanospheres by nanoscale Kirkendall diffusion, and their electrochemical properties for use in lithium-ion batteries[J]. Scientific Reports, 2016, 6:38933-38938.
[28] DU Y C, HUANG X P, ZHANG K Y. Thermal stability of LiFePO4/C-LiMn2O4 blended cathode materials[J]. Technological Sciences, 2017, 60(1):58-64.
[29] FENG M, QING L. Energy storage materials derived from Prussian blue analogues[J]. Science Bulletin, 2017, 62:358-368.

[1] 孙艳, 刘士涛, 邓尚, 余丽芸, 吕东伟, 马军, 刘献斌. 负载羧基化球状介孔纳米颗粒TFN膜的研究[J]. 化工学报, 2020, 71(S1): 454-460.
[2] 夏争争,刘加亮,牛建杰,胡涵,赵青山,吴明铂. 高分散SiO2/石油沥青基多孔碳用于锂离子电池负极[J]. 化工学报, 2020, 71(6): 2752-2759.
[3] 鞠佳,祁文旭,孔鹏飞,汤佳玉,梁飞雪,张晓欣,贺高红,杨磊. TiO2/PVDF共混微滤膜的制备及其吸附胆红素的研究[J]. 化工学报, 2020, 71(6): 2705-2712.
[4] 徐晓倩,程俊霞,朱亚明,高丽娟,赖仕全,赵雪飞. 针状焦基电容器碳质电极材料的制备及电化学性能研究[J]. 化工学报, 2020, 71(6): 2830-2839.
[5] 牛敬苒,邓会宁,张伟,胡柏松,张少峰. 二氧化钛调控基膜结构对氧化石墨烯复合膜性能的影响[J]. 化工学报, 2020, 71(6): 2850-2856.
[6] 胡涛,张熊,安亚斌,李晨,马衍伟. 锂离子电容器碳正极材料的研究进展[J]. 化工学报, 2020, 71(6): 2530-2546.
[7] 尹春华, 彭思雨, 马垒珍, 张海洋, 闫海. 纳米氧化锌的生物法合成及固定脂肪酶的研究[J]. 化工学报, 2020, 71(5): 2248-2255.
[8] 王捷, 李圆, 赵海雷. 纳米颗粒组装三维Co3O4微米花材料制备及储锂性能研究[J]. 化工学报, 2020, 71(4): 1844-1850.
[9] 李敬, 杜刚, 殷娟娟. ZnxCo1-xCO3碳酸盐负极材料的制备及其电化学性能研究[J]. 化工学报, 2020, 71(3): 1390-1397.
[10] 王柯晴, 徐劼, 沈芷璇, 陈家斌, 吴玮. LaCoO3钙钛矿活化过一硫酸盐降解萘普生[J]. 化工学报, 2020, 71(3): 1326-1334.
[11] 徐燕青, 李文飞, 吴梦瑶, 沈江南. 用于喷墨印花染料纯化的自组装GO/TiO2复合纳滤膜的制备[J]. 化工学报, 2020, 71(3): 1352-1361.
[12] 许于, 陈怡沁, 周静红, 隋志军, 周兴贵. LiFePO4锂离子电池的数值模拟:正极材料颗粒粒径的影响[J]. 化工学报, 2020, 71(2): 821-830.
[13] 陈钰, 牟天成. 低共熔溶剂在电池和电催化中的应用[J]. 化工学报, 2020, 71(1): 106-121.
[14] 魏利平,江国栋,古玉宽,滕海鹏. 五彩湾煤和吐鲁番煤热解动力学模型评估与应用[J]. 化工学报, 2019, 70(S2): 275-286.
[15] 于强, 鹿院卫, 张晓盼, 吴玉庭. 纳米粒子对熔盐复合蓄热材料热物性的影响[J]. 化工学报, 2019, 70(S1): 217-225.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李沃源, 毋伟, 邹海魁, 初广文, 邵磊, 陈建峰. Process Intensification of VOC Removal from High Viscous Media by Rotating Packed Bed[J]. CIESC Journal, 2009, 17(3): 389 -393 .
[2] 胡永琪, 王建英, 赵瑞红, 刘玉敏, 刘润静, 李永丹. Catalytic Oxidation of Cyclohexane over ZSM-5 Catalyst in N-alkyl-N-methylimidazolium Ionic Liquids[J]. CIESC Journal, 2009, 17(3): 407 -411 .
[3] 沈佳妮, 赵玉潮, 陈光文, 袁权. Investigation of Nitration Processes of iso-Octanol with Mixed Acid in a Microreactor[J]. CIESC Journal, 2009, 17(3): 412 -418 .
[4] 杨艳, 张伟刚. Kinetic and Microstructure of SiC Deposited from SiCl4-CH4-H2[J]. CIESC Journal, 2009, 17(3): 419 -426 .
[5] 张燕, 梁秀霞, 杨鹏, 陈增强, 袁著祉. Modeling and Control of Nonlinear Discrete-time Systems Based on Compound Neural Networks[J]. CIESC Journal, 2009, 17(3): 454 -459 .
[6] 毛治博, 孙晓波, 栾向海, 王钰, 刘国际. Measurement and Correlation of Solubilities of Adipic Acid in Different Solvents[J]. CIESC Journal, 2009, 17(3): 473 -477 .
[7] 肖美添, 叶静, 张亚武, 黄雅燕. Reaction Characteristics of Asymmetric Synthesis of (2S,5S)-2,5-Hexanediol Catalyzed with Baker’s Yeast Number 6[J]. CIESC Journal, 2009, 17(3): 493 -499 .
[8] 肖诚斌, 宁君, 闫海, 孙旭东, 胡继业. Biodegradation of Aniline by a Newly Isolated Delftia sp. XYJ6[J]. CIESC Journal, 2009, 17(3): 500 -505 .
[9] 耿艳楼, 胡利彦, 赵新强, 安华良, 王延吉. Synthesis of 4,4'-MDC in the Presence of Sulfonic Acid-functionalized Ionic Liquids[J]. CIESC Journal, 2009, 17(5): 756 -760 .
[10] 郑辉东, 王碧玉, 吴燕翔, 任其龙. Instability Mechanisms of Supported Liquid Membrane for Phenol Transport[J]. CIESC Journal, 2009, 17(5): 750 -755 .