化工学报 ›› 2018, Vol. 69 ›› Issue (2): 808-814.doi: 10.11949/j.issn.0438-1157.20170232

• 表面与界面工程 • 上一篇    下一篇

[BMIM]HSO4离子液体腐蚀性的实验与分子模拟

张晋玮, 成洪业, 陈立芳, 漆志文   

  1. 化学工程联合国家重点实验室, 华东理工大学, 上海 200237
  • 收稿日期:2017-03-10 修回日期:2017-06-08 出版日期:2018-02-05 发布日期:2017-06-28
  • 通讯作者: 成洪业 E-mail:CHENG Hongye,hycheng@ecust.edu.cn
  • 基金资助:

    国家自然科学基金项目(21406063,U1462123)。

Experimental and molecular simulation of corrosion of steel in [BMIM]HSO4 ionic liquid

ZHANG Jinwei, CHENG Hongye, CHEN Lifang, QI Zhiwen   

  1. State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
  • Received:2017-03-10 Revised:2017-06-08 Online:2018-02-05 Published:2017-06-28
  • Supported by:

    supported by the National Natural Science Foundation of China (21406063, U1462123).

摘要:

基于失重法和分子模拟方法,研究了1-丁基-3-甲基咪唑硫酸氢盐([BMIM]HSO4)的腐蚀性和离子液体分子与金属表面的相互作用。实验结果表明[BMIM]HSO4对304不锈钢具有腐蚀性,且在水溶液中腐蚀性显著增强。基于量子化学方法计算了[BMIM]HSO4分子的HOMO和LUMO分布、Fukui指数及分子内部特征参数,计算结果表明[BMIM]HSO4在Fe金属表面吸附的位置主要集中在阴离子硫酸氢根和阳离子咪唑环上,可分别形成配位键和反馈键,在水溶液中[BMIM]HSO4分子与金属表面的相互作用变弱。分子动力学模拟揭示了在不同的环境中[BMIM]HSO4分子在Fe金属表面的吸附过程和吸附能。量子化学计算和分子动力学模拟结果一致,从理论上解释了在水溶液中[BMIM]HSO4腐蚀性增强的原因。

关键词: 离子液体, 腐蚀, 失重法, 分子模拟, 量子化学计算, 分子动力学模拟

Abstract:

The corrosion behaviors of steel in[BMIM]HSO4 ionic liquid (IL) were investigated by immersion tests and molecular simulation. The corrosion rates of stainless steel 304 in IL were determined by mass loss measurement. The result indicates that the presence of H2O greatly enhances the corrosivity of IL. The distribution of HOMO and LUMO, Fukui indices and quantum chemical parameters on IL molecule were calculated. The results show that the imidazolium ring and hydrogen sulfate play the most important role in the interaction between IL and metal surface. The quantum chemical parameters of IL in aqueous solution significantly change. The chemical adsorption ability of IL becomes weak. The adsorption process and adsorption energy of IL on steel surface in water-free and aqueous environments were investigated by molecular dynamics simulation. The molecular simulation results are consistent well with corrosion results, which can provide a better understanding of the interaction between ionic liquid and metal surface at the molecular level.

Key words: ionic liquids, corrosion, mass loss measurement, molecular simulation, quantum chemical calculation, molecular dynamic simulation

中图分类号: 

  • TG174

[1] WISHART J F. Energy applications of ionic liquids[J]. Energy & Environmental Science, 2009, 2(9):956-961.
[2] MEINDERSMA G W, PODT A J, DE HAAN A B. Selection of ionic liquids for the extraction of aromatic hydrocarbons from aromatic/aliphatic mixtures[J]. Fuel Processing Technology, 2005, 87(1):59-70.
[3] KULKARNI P S, AFONSO C A. Deep desulfurization of diesel fuel using ionic liquids:current status and future challenges[J]. Green Chemistry, 2010, 12(7):1139-1149.
[4] ZHAO D S, WANG J L, ZHOU E P. Oxidative desulfurization of diesel fuel using a Brønsted acid room temperature ionic liquid in the presence of H2O2[J]. Green Chemistry, 2007, 9(11):1219-1222.
[5] ZHANG W, XU K, ZHANG Q, et al. Oxidative desulfurization of dibenzothiophene catalyzed by ionic liquid[BMIm]HSO4[J]. Industrial & Engineering Chemistry Research, 2010, 49(22):11760-11763.
[6] SONG Z, ZHOU T, ZHANG J N, et al. Screening of ionic liquids for solvent-sensitive extraction-with deep desulfurization as an example[J]. Chemical Engineering Science, 2015, 129:69-77.
[7] SONG Z, ZHANG J J, ZENG Q, et al. Effect of cation alkyl chain length on liquid-liquid equilibria of {ionic liquids+thiophene+ heptane}:COSMO-RS prediction and experimental verification[J]. Fluid Phase Equilibria, 2016, 425:244-251.
[8] GREAVES T L, DRUMMOND C J. Protic ionic liquids:properties and applications[J]. Chemical Reviews, 2008, 108(1):206-237.
[9] UERDINGEN M, TREBER C, BALSER M, et al. Corrosion behaviour of ionic liquids[J]. Green Chem., 2005, 7(5):321-325.
[10] MASHUGA M, OLASUNKANMI L, ADEKUNLE A, et al. Adsorption, thermodynamic and quantum chemical studies of 1-hexyl-3-methylimidazolium based ionic liquids as corrosion inhibitors for mild steel in HCl[J]. Materials, 2015, 8(6):3607-36032.
[11] SHERIF E S, ABDO H, ABEDIN S. Corrosion inhibition of cast iron in arabian gulf seawater by two different ionic liquids[J]. Materials, 2015, 8(7):3883-3895.
[12] QIANG Y J, GUO L, ZHANG S T, et al. Synergistic effect of tartaric acid with 2, 6-diaminopyridine on the corrosion inhibition of mild steel in 0. 5 mol·L-1 HCl[J]. Scientific Reports, 2016, 6:33305.
[13] TANAK H, KÖ YSAL Y, ÜNVER Y, et al. Experimental and DFT studies of ethyl N'-3-(1H-imidazol-1-yl) propylcarbamoyl benzohydrazonate monohydrate[J]. Structural Chemistry, 2009, 20(3):409-416.
[14] ULLAH S, BUSTAM M A, SHARIFF A M, et al. Experimental and quantum study of corrosion of A36 mild steel towards 1-butyl-3-methylimidazolium tetrachloroferrate ionic liquid[J]. Applied Surface Science, 2016, 365:76-83.
[15] CAO J S, REN Q, CHEN F W, et al. Comparative study on the methods for predicting the reactive site of nucleophilic reaction[J]. Science China Chemistry, 2015, 58(12):1-8.
[16] 胡松青, 胡建春, 高元军, 等. 月桂基咪唑啉对Q235钢的缓蚀吸附作用[J]. 化工学报, 2011, 62(1):147-155. HU S Q, HU J C, GAO Y J, et al. Corrosion inhibition and adsorption of lauryl-imidazolines for Q235 steel[J]. CIESC Journal, 2011, 62(1):147-155.
[17] 钱建华, 潘晓娜, 张强, 等. 2, 5-二芳基-1, 3, 4-噻二唑衍生物的合成及缓蚀性能[J]. 化工学报, 2015, 66(7):2737-2748. QIAN J H, PAN X N, ZHANG Q, et al. Synthesis of 2, 5-diaryl-1, 3, 4-thiadiazole corrosion inhibitors and their performance[J]. CIESC Journal, 2015, 66(7):2737-2748.
[18] FAN C H, HUANG X M, HAN L H, et al. Novel colorimetric and fluorescent off-on enantiomers with high selectivity for Fe3+ imaging in living cells[J]. Sensors & Actuators B Chemical, 2015, 224:592-599.
[19] FAUVET P, BALBAUD F, ROBIN R. Corrosion mechanisms of austenitic stainless steels in nitric media used in reprocessing plants[J]. Journal of Nuclear Materials, 2008, 375(1):52-64.
[20] SCHUTT T C, HEGDE G A, BHARADWAJ V S, et al. Impact of water-dilution on the biomass solvation properties of the ionic liquid 1-methyltriethoxy-3-ethylimidazolium acetate[J]. The Journal of Physical Chemistry B, 2017, 121(4):843-853.
[21] KANNAN P, KARTHIKEYAN J, MURUGAN P, et al. Corrosion inhibition effect of novel methyl benzimidazolium ionic liquid for carbon steel in HCl medium[J]. Journal of Molecular Liquids, 2016, 221:368-380.
[22] OLASUNKANMI L, OBOT I B, KABANDA M M, et al. Some quinoxalin-6-yl derivatives as corrosion inhibitors for mild steel in hydrochloric acid:experimental and theoretical studies[J]. Journal of Physical Chemistry C, 2015, 119(28):16004-16019.
[23] ZHENG X W, ZHANG S T, LI W P, et al. Experimental and theoretical studies of two imidazolium-based ionic liquids as inhibitors for mild steel in sulfuric acid solution[J]. Corrosion Science, 2015, 95:168-179.
[24] ASEGBELOYIN J, EJIKEME P, OLASUNKANMI L, et al. A novel schiff base of 3-acetyl-4-hydroxy-6-methyl-(2H)pyran-2-one and 2, 2'-(ethylenedioxy)diethylamine as potential corrosion inhibitor for mild steel in acidic medium[J]. Materials, 2015, 8(6):2918-2934.
[25] ONA O B, DE CLERCQ O, ALCOBA D R, et al. Atom and bond Fukui functions and matrices:a Hirshfeld-I atoms-in-molecule approach[J]. Chemphyschem A European Journal of Chemical Physics & Physical Chemistry, 2016, 17(18):2881-2889.
[26] UDHAYAKALA P, JAYANTHI A, RAJENDIRAN T V, et al. Quantum chemical studies on some thiadiazolines as corrosion inhibitors for mild steel in acidic medium[J]. Research on Chemical Intermediates, 2012, 39(39):895-906.
[27] SULAIMAN K O, ONAWOLE A T. Quantum chemical evaluation of the corrosion inhibition of novel aromatic hydrazide derivatives on mild steel in hydrochloric acid[J]. Computational & Theoretical Chemistry, 2016, 1093:73-80.
[28] YILMAZ N, FITOZ A, ERGUN Ü, et al. A combined electrochemical and theoretical study into the effect of 2-((thiazole-2-ylimino)methyl)phenol as a corrosion inhibitor for mild steel in a highly acidic environment[J]. Corrosion Science, 2016, 111:110-120.
[29] DENG S D, LI X H, XIE X G. Hydroxymethyl urea and 1, 3-bis(hydroxymethyl) urea as corrosion inhibitors for steel in HCl solution[J]. Corrosion Science, 2014, 80(3):276-289.
[30] LIU X Q, XUE Y, TIAN Z Y, et al. Adsorption of CH4 on nitrogen-and boron-containing carbon models of coal predicted by density-functional theory[J]. Applied Surface Science, 2013, 285(19):190-197.
[31] 王小露, 万辉, 管国锋.[EPy]Cl和[EPy]Br离子对的气相和液相结构及阴阳离子间的相互作用[J]. 物理化学学报, 2008, 24(11):2077-2082. WANG X L, WAN H, GUAN G F. Structure and interaction of ion-pairs of[EPy]Cl and[EPy]Br in gas and liquid phases[J]. Acta Phys. -Chim. Sin., 2008, 24(11):2077-2082.

[1] 张玉玲, 张利平, 王倩, 李旭东, 刘晓冬, 张敬红. 循环冷却系统污垢中无机磷提取方法优化[J]. 化工学报, 2019, 70(3): 1083-1088.
[2] 曾少娟, 尚大伟, 余敏, 陈昊, 董海峰, 张香平. 离子液体在氨气分离回收中的应用及展望[J]. 化工学报, 2019, 70(3): 791-800.
[3] 何昌春, 徐磊, 陈伟, 徐晓峰, 欧阳鹏威. 常顶系统流动腐蚀机理预测及防控措施优化[J]. 化工学报, 2019, 70(3): 1027-1034.
[4] 王磊, 方桂英, 阳庆元. 金属-有机骨架材料CO2捕获性能的大规模计算筛选[J]. 化工学报, 2019, 70(3): 1135-1143.
[5] 梁馨元, 张磊, 刘琳琳, 都健. 基于分子动力学的橡胶聚合物计算机辅助设计方法[J]. 化工学报, 2019, 70(2): 525-532.
[6] 张志刚, 张德彪, 张亲亲, 张弢, 杨茹, 李文秀. 基于COSMO-RS方法筛选离子液体分离乙酸乙酯-乙腈共沸物[J]. 化工学报, 2019, 70(1): 146-153.
[7] 蔡惊涛, 李代禧, 刘宝林, 栾翰森, 郭柏松, 魏冬青, 王浩. 尿素(520)晶面可控结晶的分子动力学模拟[J]. 化工学报, 2019, 70(1): 128-135.
[8] 潘佩媛, 陈衡, 焦健, 梁志远, 赵钦新. 湿法脱硫后烟气腐蚀现场实验研究[J]. 化工学报, 2019, 70(1): 161-169.
[9] 向文军, 朱朝菊, 刘丹, 周绿山. 分子动力学模拟研究两亲聚合物与疏水纳米粒子自组装核-壳结构[J]. 化工学报, 2019, 70(1): 345-354.
[10] 李冬燕, 魏巍, 韩峰. 高温除尘碳化硅膜的制备及其抗腐蚀特性[J]. 化工学报, 2019, 70(1): 336-344.
[11] 孙艳军, 邸高雷, 夏娟, 王晓坡, 金立文. 以离子液体为吸收剂的吸收式制冷循环热力学分析[J]. 化工学报, 2018, 69(S2): 38-44.
[12] 韩瑞涛, 赵磊, 唐二军, 赵雄燕, 赵聪思. ATRP法接枝卤胺分子制备纤维素共聚物抗菌材料[J]. 化工学报, 2018, 69(S1): 155-160.
[13] 唐二军, 姚蒙蒙, 郭晓峰, 王瑞宏, 刘少杰, 高昊. 水性环氧丙烯酸酯乳液涂层成膜性能[J]. 化工学报, 2018, 69(S1): 143-147.
[14] 刘燕, 夏天天, 孙位仕, 万印华, 沈飞, 邓会宁. 电渗析-真空膜蒸馏集成膜法回收离子液体[J]. 化工学报, 2018, 69(9): 3905-3913.
[15] 徐令君, 王淑娟. [Bmim][BF4]/MEA混合水溶液的CO2汽液平衡和解吸能耗分析[J]. 化工学报, 2018, 69(9): 3879-3886.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!