化工学报 ›› 2017, Vol. 68 ›› Issue (3): 801-810.doi: 10.11949/j.issn.0438-1157.20161603

• 综述与专论 • 上一篇    下一篇

工业系统超结构模型应用研究进展

曹健1,2, 牟鹏1,2, 耿志强1,2, 朱群雄1,2   

  1. 1 北京化工大学信息科学与技术学院, 北京 100029;
    2 智能过程系统工程教育部工程研究中心, 北京 100029
  • 收稿日期:2016-11-14 修回日期:2016-11-17 出版日期:2017-03-05 发布日期:2016-11-30
  • 通讯作者: 朱群雄,zhuqx@mail.buct.edu.cn E-mail:zhuqx@mail.buct.edu.cn
  • 基金资助:

    国家自然科学基金重点项目(61533003)。

Research progress and application of superstructure model for industrial systems

CAO Jian1,2, MU Peng1,2, GENG Zhiqiang1,2, ZHU Qunxiong1,2   

  1. 1 College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China;
    2 Engineering Research Center of Intelligent PSE, Ministry of Education, Beijing 100029, China
  • Received:2016-11-14 Revised:2016-11-17 Online:2017-03-05 Published:2016-11-30
  • Contact: 10.11949/j.issn.0438-1157.20161603 E-mail:zhuqx@mail.buct.edu.cn
  • Supported by:

    supported by the National Natural Science Foundation of China (61533003).

摘要:

超结构模型的研究和应用可以有效解决化工、水处理、钢铁、冶金等领域中逐渐凸显的能源效率问题,常见于工业系统中的热交换网络和质量交换网络、水网以及其他网络。详细论述了换热网络中的基于状态空间超结构、基于分级超结构模型,以及两种经典超结构模型思想在质量交换网络、水网中的应用。完成超结构构建后,根据工业的实际生产状况,一般以年度总费用为目标函数,选取合理算法优化超结构网络,最终得到所需的新建或者改建方案。总结归纳了常见的优化算法,主要分为两大类:确定性算法和随机算法。最后阐述了超结构模型在科学研究和实际工程应用中还存在的问题以及下一步的研究方向。

关键词: 超结构, 混合整数非线性规划, 状态空间, 分级, 模型, 优化, 遗传算法

Abstract:

Research and application of superstructure can effectively solve the problem of energy efficiency in the fields of chemical industry, water treatment, steel, metallurgy and so on, and were commonly found in heat exchanger network, mass exchanger networks, water networks and other networks. This article reviews the heat exchanger network based on the state-space superstructure model, stage-wise superstructure model and mass exchanger network, water network based on two classical ideological superstructure model. After the construction of the superstructure, according to the actual situation of industrial production, the total annual cost is chosen as the general objective function, appropriate algorithm is selected to optimize network superstructure, finally the required new or renovation program are obtained. This paper also summarizes common optimization algorithm, it divided into two categories:deterministic algorithm and random algorithm. Finally, the article describes the problems of superstructure modeling in scientific research and practical application, and its future research directions.

Key words: superstructure, MINLP, state-space, stage-wise, model, optimization, genetic algorithm

中图分类号: 

  • TQ021.8

[1] 赵松龄. 国内外低碳物流发展的比较与借鉴[J]. 对外经贸实务, 2014, 1(24):90-92. ZHAO S L. Comparison and reference of the development of low-carbon logistics[J]. Practice in Foreign Economic Relations and Trade, 2014, 1(24):90-92.
[2] 钱伯章. 节能减排——可持续发展的必由之路[M]. 北京:科学出版社, 2008. QIAN B Z. Energy Conservation and Emissions Reduction-The Only Way for Sustainable Development[M]. Beijing:Science Press, 2008.
[3] GROSSMANN I E, SARGENT R W H. Optimum design of heat exchanger networks[J]. Computers and Chemical Engineering, 1978, 2:1-7.
[4] BAGAJEWICZ M J, MANOUSIOUTHAKIS V. Mass/heat-exchange network representation of distillation networks[J]. AIChE J., 1992, 38(11):1769-1800.
[5] EL-HALWAGI M M, MANOUSIOUTHAKIS V. Synthesis of mass exchange networks[J]. AIChE J., 1989, 35(18):1233-1244.
[6] DEBORA C F, KIM S Y, BAGAJEWICZ M J. Global optimization of the stage-wise superstructure model for heat exchanger networks[J]. Ind. Eng. Chem. Res., 2015, 54:1595-1604.
[7] YEE T F, GROSSMANN I E. Simultaneous optimization models for heat integration(Ⅰ):Area and energy targeting and modeling of multi-stream exchangers[J]. Computers and Chemical Engineering, 1990, 14:1151-1164.
[8] JONGGEOL N, JAEHEUM J, CHANSAEM P, et al. Simultaneous synthesis of a heat exchanger network with multiple utilities using utility substages[J]. Computers and Chemical Engineering, 2015, 79:70-79.
[9] ADENIYI I, MILOS B, DUNCAN F, et al. Optimal synthesis of heat exchanger networks for multi-period operations involving single and multiple utilities[J]. Chemical Engineering Science, 2015, 127:175-188.
[10] VIVIANI C O. Simultaneous synthesis of heat exchanger networks with pressure recovery:optimal integration between heat and work[J]. AIChE J., 2014, 60:893-908.
[11] LEI Y, QI X, ZHANG B J, et al. Simultaneous optimization of the complex fractionator and heat exchanger network considering the constraints of variable heat removals in delayed coking units[J]. Ind. Eng. Chem. Res., 2014, 53:13073-13086.
[12] CHEN C L, CHANG F Y, CHAO T H, et al. Heat-exchanger network synthesis involving organic Rankine cycle for waste heat recovery[J]. Ind. Eng. Chem. Res., 2014, 53:16924-16936.
[13] LIRA-BARRAGAN L F, PONCE-ORTEGA J M, SERNA-GONZALEZ M, et al. Optimum heat storage design for solar-driven absorption refrigerators integrated with heat exchanger networks[J]. AIChE J., 2014, 60(3):909-930.
[14] LIRA-BARRAGAN L F, PONCE-ORTEGA J M, SERNA-GONZALEZ M, et al. Sustainable integration of trigeneration systems with heat exchanger networks[J]. Ind. Eng. Chem. Res, 2014, 53:2732-2750.
[15] 李永强, 王兵, 邹雄, 等. 基于状态空间超级结构的多流股换热网络最优设计[J].化工学报, 2014, 65(6):2156-2164. LI Y Q, WANG B, ZOU X, et al. Optimal design of multistream heat exchanger network based on state space superstructure[J]. CIESC Journal, 2014, 65(6):2156-2164.
[16] HARRY A J W, KAMIL A K, PAULIB, et al. Multistream heat exchanger modeling and design[J]. AIChE J., 2015, 61(10):3390-3403.
[17] DONG H G, LIN C Y, CHANG C T. Simultaneous optimization strategy for synthesizing heat exchanger networks with multi-stream mixers[J].Chemical Engineering Research and Design, 2008, 86:299-309.
[18] BHARGAVA K S, RANGAIAH G P. Review of heat exchanger network retrofitting methodologies and their applications[J]. Ind. Eng. Chem. Res., 2014, 53:11205-11220.
[19] RAYMOND R T, CHRISTINA D C, KATHLEEN B A. P-graph approach to optimal operational adjustment in polygeneration plants under conditions of process inoperability[J]. Applied Energy, 2014, 135:402-406.
[20] WU W Z, CARLOS A, CHRISTOS T M. A superstructure representation, generation, and modeling framework for chemical process synthesis[J]. AIChE J., 2016, 62(9):3199-3214.
[21] HEGYHÁTI M, MAJOZI T, HOLCZINGER T, et al. Practical infeasibility of cross-transfer in batch plants with complex recipes:S-graph vs MILP methods[J]. Chemical Engineering Science, 2009, 64:605-610.
[22] JAVIER R, LUIS P, TIBOR H, et al. Scheduling intermediate storage multipurpose batch plants using the S-graph[J]. AIChE J., 2004, 50(2):403-417.
[23] ISTVÁN H, HERIBERTO C, FERENC F. Designing sustainable supply chains in the energy-waterfood nexus by the P-graph methodology[J]. Chemical Engineering Transactions, 2015, 45:1351-1356.
[24] SANMARTI E, PUIGJANER L, HOLCZINGER T, et al. Combinatorial framework for effective scheduling of multipurpose batch plants[J]. AIChE J., 2002, 48(11):2557-2570.
[25] THOKOZANI M, FERENC F. Maximization of throughput in a multipurpose batch plant under a fixed time horizon:S-graph approach[J].Ind. Eng. Chem. Res., 2006, 45:6713-6720.
[26] 高维平, 杨莹, 韩方煌.换热网络优化节能技术[M].北京:中国石化出版社, 2004. GAO W P, YANG Y, HAN F H. Technology of Optimization and Energy Saving of Heat Exchanger Networks[M].Beijing:China Petrochemical Press Co.Ltd., 2004.
[27] HWA C S. Mathematical formulation and optimization of heat exchange network using separable programming[J]. AIChE-Intern. Chem. Eng. Symp. Series, 1965, 4:101-106.
[28] KEVIN C F, NIKOLAOS V S.A critical review and annotated bibliography for heat exchanger network synthesis in the 20th century[J]. Ind. Eng. Chem. Res., 2002, 41:2335-2370.
[29] LINNHOFF B, FLOWER J R. Synthesis of heat exchanger networks(Ⅰ):Systematic generation of energy optimal networks[J]. Chem. Eng. Sci., 1978:1-3.
[30] YEE T F, GROSSMANN I E. Simultaneous optimization models for heat integration(Ⅰ):Area and energy targeting and modeling of multi-stream exchangers[J]. Computers and Chemical Engineering, 1990, 4:1151.
[31] YEE T F, GROSSMANN I E. Simultaneous optimization models for heat integration(Ⅱ):Heat exchanger network synthesis[J]. Computers and Chemical Engineering, 1990, 14:1165.
[32] POLLEY G T, PANJEH S M H, JEGEDE F. Pressure drop considerations in the retrofit of heat exchanger networks[J]. Chemical Engineering Research & Design, 1990, 68(3):211-220.
[33] 袁希钢.混合整数非线性规划与化学工程系统最优化设计(Ⅱ):换热器网络的最优合成[J].化工学报, 1991, 42(l):40-46. YUAN X G. Mixed-integer non-linear programming and optimal design of chemical engineering system(Ⅱ):Synthesis of heat exchanger networks[J]. Journal of Chemical Industry and Engineering(China), 1991, 42(l):40-46.
[34] 霍兆义, 尹洪超, 赵亮, 等. 国内换热网络综合方法研究进展与展望[J].化工进展, 2012, 31(4):726-731. HUO Z Y, YIN H C, ZHAO L, et al. Process and prospect for the methodology of heat exchanger network synthesis in China[J]. Chemical Industry and Engineering Progress, 2012, 31(4):726-731.
[35] KIM S Y, MIGUEL B. Global optimization of heat exchanger networks using a new generalized superstructure[J]. Chemical Engineering Science, 2016, 147:30-46.
[36] 崔月会.基于状态空间的换热网络优化研究[D]. 大连:大连理工大学, 2012. CUI Y H. Optimal design of heat-exchanger networks based on state space[D].Dalian:Dalian University of Technology, 2012.
[37] 苏文杰.换热网络优化规则及求解策略研究[D]. 大连:大连理工大学, 2005. SU W J. Study on the optimization rules and solution tactics of HEN[D]. Dalian:Dalian University of Technology, 2012.
[38] EI-HAJWAGI M M, MANOUSIOUTHAKIS V. Automatic synthesis of mass exchange networks with single component targets[J]. Chemical Engineering Science, 1990, 45:2813-2831.
[39] EI-HALWAGI M M, MANOUSIOUTHAKIS V. Simultaneous synthesis of mass exchange and regeneration networks[J]. AIChE J., 1990, 36:1209-1219.
[40] WILSON S, MANOUSIOUTHANKIS V. Minimum utility cost for a multicomponent mass exchange operation[J]. Chemical Engineering Science, 1998, 53(22):3887-3896.
[41] 大连理工大学. 化工原理(下册)[M]. 北京:高等教育出版社, 2002. Dalian University of Technology. The Principles of Chemical Engineering(Ⅱ)[M]. Beijing:Higher Education Press, 2002.
[42] CHEN C L, HUNG P S. Retrofit of mass-exchange networks with superstructure-based MINLP formulation[J]. Ind. Eng. Chem. Res., 2005, 44:7189-7199.
[43] CHEN C L, CIOU Y J. Synthesis of a continuously operated mass-exchanger network for a semiconsecutive process[J]. Ind. Eng. Chem. Res., 2007, 46:7136-7151.
[44] CHEN C L, CIOU Y Y. Superstructure-based MINLP formulation for synthesis of semicontinuous mass exchanger networks[J]. Ind. Eng. Chem. Res., 2006, 45:6728-6739.
[45] CHEN C L, HUNG P S. Simultaneous synthesis of mass exchange networks for waste minimization[J]. Computers and Chemical Engineering, 2005, 29:1561-1576.
[46] 都健, 李秀峰, 陈理, 等. 超结构法分步综合热集成的质量交换网络[J]. 化工学报, 2010, 61(10):2636-2642. DU J, LI X F, CHEN L, et al. Synthesis of heat integrated mass exchanger networks using step-wise approach based on superstructure[J]. CIESC Journal, 2010, 61(10):2636-2642.
[47] LIU L L, DU J, YANG F L. Combined mass and heat exchange network synthesis based on stage-wise superstructure model[J]. Chinese Journal of Chemical Engineering, 2015, 23:1502-1508.
[48] LI L J, ZHOU R J, DONG H G, et al. Separation network design with mass and energy separating agents[J]. Computers and Chemical Engineering, 2011, 35:2005-2016.
[49] TAKAMA N, KURIYAMA T, SHIROKO K, UMEDA T. Optimal water allocation in a petroleum refinery[J]. Computers and Chemical Engineering, 1980, 4:251-258.
[50] WANG Y P, SMITH R. Wastewater minimization[J]. Chem. Eng. Sci., 1994, 49(7):981-1006.

[1] 张志刚, 张德彪, 张亲亲, 张弢, 杨茹, 李文秀. 基于COSMO-RS方法筛选离子液体分离乙酸乙酯-乙腈共沸物[J]. 化工学报, 2019, 70(1): 146-153.
[2] 李挺, 贾卓泰, 张庆华, 杨超, 毛在砂. 几种单层桨搅拌槽内宏观混合特性的比较[J]. 化工学报, 2019, 70(1): 32-38.
[3] 邓伟峰, 蒋珍华, 刘少帅, 张安阔, 吴亦农. 高温区大冷量脉管制冷机优化设计与实验特性[J]. 化工学报, 2019, 70(1): 107-115.
[4] 熊攀, 鄢曙光, 刘玮寅. 基于响应曲面法的旋风分离器结构优化[J]. 化工学报, 2019, 70(1): 154-160.
[5] 张丽, 王文武, 张智恩, 刘培胜, 文江波, 董亮. 一种天然气液化和CO2捕集相结合的余热回收发电系统[J]. 化工学报, 2019, 70(1): 261-270.
[6] 丁炯, 陈琪, 许启跃, 杨遂军, 叶树亮. 融合C80数据的绝热加速量热法热惯量因子修正[J]. 化工学报, 2019, 70(1): 417-424.
[7] 王子宗, 刘洪谦, 王基铭. 甲醇制丙烯分离流程的研究与优化[J]. 化工学报, 2019, 70(1): 136-145.
[8] 薄琳, 孙宝芝, 干依燃, 丁宏达, 史建新. 一次扰动下直流蒸汽发生器动态换热性能仿真[J]. 化工学报, 2018, 69(S1): 64-71.
[9] 胡沛裕, 王树刚, 宋双林, 蒋爽, 梁运涛. 基于完全并行细化算法的孔隙网络中轴提取方法[J]. 化工学报, 2018, 69(S1): 26-33.
[10] 钟英杰, 黄其, 邓凯, 赵创要, 苏艺花. 三角槽道低Reynolds数脉动流的流动特性分析[J]. 化工学报, 2018, 69(9): 3806-3813.
[11] 李亚娟, 赵传起, 杨悦锁, 王园园, 宋晓明. 石墨烯基铁氧化物对水体中草甘膦的动态吸附性能及模型[J]. 化工学报, 2018, 69(9): 3944-3953.
[12] 高学金, 黄梦丹, 齐咏生, 王普. PDPSO优化多阶段AR-PCA间歇过程监测方法[J]. 化工学报, 2018, 69(9): 3914-3923.
[13] 牛培峰, 王枭飞, 刘楠, 王愿宁, 常玲芳, 张先臣. ASOS-ELM建模方法及在汽轮机热耗率预测中的应用[J]. 化工学报, 2018, 69(9): 3924-3931.
[14] 王东祥, 凌祥, 崔政伟, 俞建峰. 转盘离心雾化高黏非牛顿流体薄液膜纤维化特性[J]. 化工学报, 2018, 69(9): 3799-3805.
[15] 杨树俊, 魏玉聪, Woo Meng Wai, 吴铎, 陈晓东, 肖杰. 入口旋流对均一粒径液滴喷雾干燥塔影响的数值模拟[J]. 化工学报, 2018, 69(9): 3814-3824.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!