化工学报 ›› 2016, Vol. 67 ›› Issue (2): 504-511.doi: 10.11949/j.issn.0438-1157.20151056

• 流体力学与传递现象 • 上一篇    下一篇

十字聚焦型微通道内弹状液滴在黏弹性流体中的生成与尺寸预测

张沁丹, 付涛涛, 朱春英, 马友光   

  1. 天津大学化工学院, 化学工程联合国家重点实验室, 天津化学化工协同创新中心, 天津 300072
  • 收稿日期:2015-07-06 修回日期:2015-08-07 出版日期:2016-02-05 发布日期:2015-08-08
  • 通讯作者: 马友光 E-mail:ygma@tju.edu.cn
  • 基金资助:

    国家自然科学基金项目(21276175,21106093,91434204);天津市自然科学基金项目(13JCQNJC05500)。

Formation and size prediction of slug droplet in viscoelastic fluid in flow-focusing microchannel

ZHANG Qindan, FU Taotao, ZHU Chunying, MA Youguang   

  1. School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
  • Received:2015-07-06 Revised:2015-08-07 Online:2016-02-05 Published:2015-08-08
  • Supported by:

    supported by the National Natural Science Foundation of China (21276175, 21106093, 91434204) and the Natural Science Foundation of Tianjin(13JCQNJC05500).

摘要:

利用高速摄像仪对十字聚焦微通道内液滴在黏弹性流体中的生成过程进行了实验研究。微通道截面为600μm×600 μm 的正方形结构,采用硅油作为分散相,含0.3%表面活性剂十二烷基硫酸钠(SDS)的聚环氧乙烷(PEO)水溶液(质量分数分别为0.1%,0.3%,0.6%)为连续相。实验观察到了弹状流、滴状流和喷射流3 种流型。对弹状流型下液滴生成过程的颈部动力学进行了研究,考察了两相流率、连续相毛细数及弹性数对液滴尺寸的影响。结果表明:弹状液滴尺寸随连续相流率、毛细数及弹性数的增加而减小,随分散相流率的增加而增加,连续相弹性对液滴尺寸的影响相对较小。以油水两相流率比和连续相的毛细数及Reynolds 数为变量建立了弹状液滴尺寸的预测关联式,预测值与实验值吻合良好。

关键词: 微通道, 两相流, 流体动力学, 液滴, 黏弹性, 尺寸预测

Abstract:

A high-speed camera was utilized to observe the formation of the droplet in viscoelastic fluid in flow-focusing microchannel. The microchannel with a square section of 600 μm×600 μm was used in the experiment. Silicone oil and polyethylene oxide (PEO) solution (0.1%,0.3%,0.6%) with 0.3% surfactant sodium dodecyl sulfate (SDS) were used as dispersed and continuous phases, respectively. Three flow patterns were observed: slug flow, dripping flow and jetting flow. The transition lines for different flow patterns were obtained. The dynamics of breakup for slug droplets was studied. The effects of two-phase flow rates, capillary number and elasticity number of the continuous phase on the size of slug droplet were investigated experimentally. The results indicated that the size of slug droplet decreased with increasing flow rate, capillary number and elasticity number of the continuous phase, but it increased with increasing flow rate of the dispersed phase. The impact of the elasticity of the continuous phase on slug droplet size was relatively small. The correlations for predicting the size of slug droplet were proposed by taking the ratio of two-phase flow rates, and the capillary number and Reynolds number of the continuous phase into account. The prediction result agreed well with the experimental data.

Key words: microchannels, two-phase flow, hydrodynamics, droplet, viscoelasticity, size prediction

中图分类号: 

  • TQ021.4

[1] 陈光文, 袁权. 微化工技术[J]. 化工学报, 2003, 54(4):427-439. DOI:10.3321/j.issn:0438-1157.2003.04.004. CHEN G W, YUAN Q. Micro chemical technology[J]. Journal of Chemical Industry and Engineering(China), 2003, 54(4):427-439. DOI:10.3321/j.issn:0438-1157.2003.04.004.
[2] ZHAO C X, MIDDELBERG A P J. Two-phase microfluidic flows[J]. Chemical Engineering Science, 2011, 66(7):1394-1411.
[3] DREYFUS R, TABELING P, WILLAIME H. Ordered and disordered patterns in two-phase flows in microchannels[J]. Physical Review Letters, 2003, 90(14):144505.
[4] FU T T, MA Y G, LI H Z. Hydrodynamic feedback on bubble breakup at a T-junction within an asymmetric loop[J]. AIChE Journal, 2014, 60(5):1920-1929.
[5] CUBAUD T, MASON T G. Capillary threads and viscous droplets in square microchannels[J]. Physics of Fluids, 2008, 20(5):053302.
[6] FU T T, WU Y N, MA Y G, et al. Droplet formation and breakup dynamics in microfluidic flow-focusing devices:from dripping to jetting[J]. Chemical Engineering Science, 2012, 84:207-217.
[7] LIU H, ZHANG Y. Droplet formation in microfluidic cross-junctions[J]. Physics of Fluids, 2011, 23(8):082101.
[8] UTADA A S, LORENCEAU E, LINK D R, et al. Monodisperse double emulsions generated from a microcapillary device[J]. Science, 2005, 308(5721):537-541.
[9] ZHAO C X. Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery[J]. Advanced Drug Delivery Reviews, 2013, 65(11/12):1420-1446.
[10] HUEBNER A, SHARMA S, SRISA-ART M, et al. Microdroplets:a sea of applications?[J]. Lab on a Chip, 2008, 8(8):1244-1254.
[11] FU T T, MA Y G, FUNFSCHILLING D, et al. Breakup dynamics of slender bubbles in non-Newtonian fluids in microfluidic flowfocusing devices[J]. AIChE Journal, 2012, 58(11):3560-3567.
[12] STEINHAUS B, SHEN A Q, SURESHKUMAR R. Dynamics of viscoelastic fluid filaments in microfluidic devices[J]. Physics of Fluids, 2007, 19(7):073103.
[13] LEE W, WALKER L M, ANNA S L. Competition between viscoelasticity and surfactant dynamics in flow focusing microfluidics[J]. Macromolecular Materials and Engineering, 2011, 296(3/4):203-213.
[14] BYRON B R, CARREAU P J. A nonlinear viscoelastic model for polymer solutions and melts-Ⅰ[J]. Chemical Engineering Science, 1968, 23(5):427-434.
[15] DEL GIUDICE F, D'AVINO G, GRECO F, et al. Effect of fluid rheology on particle migration in a square-shaped microchannel[J]. Microfluidics and Nanofluidics, 2015, 19(1):95-104.
[16] REN Y, LIU Z, SHUM H C. Breakup dynamics and dripping-to-jetting transition in a Newtonian/shear-thinning multiphase microsystem[J]. Lab on a Chip, 2015, 15(1):121-134.
[17] FU T T, FUNFSCHILLING D, MA Y G, et al. Scaling the formation of slug bubbles in microfluidic flow-focusing devices[J]. Microfluidics and Nanofluidics, 2010, 8(4):467-475.
[18] FU T T, MA Y G, FUNFSCHILLING D, et al. Bubble formation and breakup mechanism in a microfluidic flow-focusing device[J]. Chemical Engineering Science, 2009, 64(10):2392-2400.
[19] DOLLET B, VAN HOEVE W, RAVEN J-P, et al. Role of the channel geometry on the bubble pinch-off in flow-focusing devices[J]. Physical Review Letters, 2008, 100(3):034504.
[20] TIRTAATMADJA V, MCKINLEY G H, COOPER-WHITE J J. Drop formation and breakup of low viscosity elastic fluids:effects of molecular weight and concentration[J]. Physics of Fluids, 2006, 18(4):043101.
[21] THORSEN T, ROBERTS R W, ARNOLD F H, et al. Dynamic pattern formation in a vesicle-generating microfluidic device[J]. Physical Review Letters, 2001, 86(18):4163-4166.
[22] GARSTECKI P, FUERSTMAN M J, STONE H A, et al. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up[J]. Lab on a Chip, 2006, 6(3):437-446.

[1] 杜东兴, 张丹, 李莺歌, 巢昆, 马连湘. 泡沫液在均质多孔介质内动态驱替过程的二维数值模拟研究[J]. 化工学报, 2018, 69(S1): 48-52.
[2] 祝及龙, 石万元. 平面上固定接触角蒸发液滴内Marangoni对流失稳现象[J]. 化工学报, 2018, 69(S1): 53-57.
[3] 杨树俊, 魏玉聪, Woo Meng Wai, 吴铎, 陈晓东, 肖杰. 入口旋流对均一粒径液滴喷雾干燥塔影响的数值模拟[J]. 化工学报, 2018, 69(9): 3814-3824.
[4] 李斌, 张尚彬, 张磊, 滕昭钰, 王佑天. 基于LBM-DEM的鼓泡床内气泡-颗粒动力学数值模拟[J]. 化工学报, 2018, 69(9): 3843-3850.
[5] 朱礼涛, 罗正鸿. 磁共振成像应用于多相流体动力学研究进展[J]. 化工学报, 2018, 69(9): 3765-3773.
[6] 李晗, 蒲文灏, 杨宁, 毛衍钦, 岳晨, 张琦. 空气-石蜡直接接触换热特性实验研究[J]. 化工学报, 2018, 69(9): 3792-3798.
[7] 季佳圆, 赵伶玲. 范德华力对Lennard-Jones体黏弹性的影响[J]. 化工学报, 2018, 69(8): 3331-3337.
[8] 孙阳, 杨道业, 刘大震, 封文轩, 顾沐阳. 矩形喷动床三维电容层析成像[J]. 化工学报, 2018, 69(8): 3383-3389.
[9] 梁刚涛, 张天宇, 陈红亮, 余海兵, 沈胜强. 多液滴同步冲击液膜时中间薄膜射流形成机理与动力学特征[J]. 化工学报, 2018, 69(8): 3356-3363.
[10] 牛守梓, 吴海涛, 徐英, 李建立, 张涛. 基于文丘里管的页岩气试采期段塞流测量补偿方法[J]. 化工学报, 2018, 69(8): 3364-3372.
[11] 敬加强, 尹然, 马孝亮, 孙杰, 吴嬉. 水平管稠油掺气减阻模拟实验[J]. 化工学报, 2018, 69(8): 3398-3407.
[12] 贺登辉, 陈森林, 白博峰. 基于Chisholm模型的V锥流量计气液分层流测量新模型[J]. 化工学报, 2018, 69(8): 3428-3435.
[13] 胡仁涛, 任立波, 王德武, 刘燕, 张少峰. 竖直窄通道充分发展段液固流动特性的数值模拟[J]. 化工学报, 2018, 69(8): 3408-3417.
[14] 姜鹏, 王琨, 谯敏, 李俊峰, 薛云翔, 黄卫星. 气液两相并流下行通过堆叠筛板填料的压降特性[J]. 化工学报, 2018, 69(8): 3373-3382.
[15] 吴春旭, 李俊明. 方形微通道内流动凝结时气液相界面演进过程的数值模拟[J]. 化工学报, 2018, 69(7): 2851-2859.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!