化工学报 ›› 2016, Vol. 67 ›› Issue (2): 557-562.doi: 10.11949/j.issn.0438-1157.20150926

• 催化、动力学与反应器 • 上一篇    下一篇

1kW SOFC-CHP系统用催化燃烧耦合蒸汽重整反应器的实验研究

张莉, 邢耀华, 钟杰, 徐宏, 曹军   

  1. 华东理工大学机械与动力工程学院, 化学工程联合国家重点实验室, 上海 200237
  • 收稿日期:2015-06-15 修回日期:2015-11-09 出版日期:2016-02-05 发布日期:2015-11-19
  • 通讯作者: 张莉 E-mail:lzhang@ecust.edu.cn
  • 基金资助:

    中国石化科技开发项目支持。

Experimental study on reactor integrating catalytic combustion and steam reforming for 1 kW SOFC-CHP

ZHANG Li, XING Yaohua, ZHONG Jie, XU Hong, CAO Jun   

  1. State Key Laboratory of Chemical Engineering, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
  • Received:2015-06-15 Revised:2015-11-09 Online:2016-02-05 Published:2015-11-19
  • Supported by:

    supported by the China Petrochemical Science and Technology Exploitation Project.

摘要:

针对1 kW 固体氧化物燃料电池热电联供(SOFC-CHP)系统开发了集成催化燃烧、换热及蒸汽重整的反应器,搭建了性能评价系统,系统研究了燃烧侧气体组分及工艺参数对该反应器性能的影响规律。实验结果表明:在反应器燃烧侧气体入口温度为300℃、空燃比为10:1、电堆燃料利用率为65%、水碳比为3 的条件下,重整侧转化率达到73.6%,重整尾气中H2 含量为67.5%。电堆燃料利用率对重整反应转化效率影响较大,其值大于80%时,采用尾气燃烧的余热回收方式无法有效为蒸汽重整提供所需热量。在150~350℃范围内,降低燃烧侧气体入口温度对重整反应效率影响较小,建议采用尾气先换热再进行催化燃烧的流程设计,保证重整效率的前提下可有效提升系统热效率。空燃比的降低可小幅度提升重整效率,在保证电堆反应温度稳定的前提下,适当降低空燃比可减少空气压缩机的功耗,从而提升整个系统的效率。研究成果对SOFC-CHP 系统的优化和整体效率提升具有指导意义。

关键词: 催化燃烧, 蒸汽重整, 反应器, 热电联供, 传热, 燃料电池

Abstract:

A reactor integrating catalytic combustion, heat exchange and steam reforming was developed for a 1 kW solid oxide fuel cell-combined heating and power system (SOFC-CHP). Experiments were carried out to investigate the effect of combustion gas components and process parameters on properties of the reactor. The results showed that methane conversion rate was 73.6% and hydrogen concentration in the exhaust gas was 67.5% under operating conditions at the inlet temperature of combustion gas of 300℃, air-fuel ratio of 10:1, fuel utilization of stacks of 65% and water-carbon ratio of 3:1. Fuel utilization of the SOFC stacks had significant effect on methane conversion. Waste heat recovery from the exhaust gas combustion cannot provide enough heat for methane steam reforming when the fuel utilization was greater than 80%. Reduction of the inlet temperature of combustion gas had slight effect on methane conversion in the range of 150-350℃. Thus, it was recommended that the heat exchange can be firstly conducted before catalytic combustion to improve heat efficiency without obvious change to reforming reaction efficiency. Reduction of air-fuel ratio under the premise of ensuring the efficiency of reforming can decrease power consumption of the compressor and increase the system efficiency. This achievements can provide guidance to the increase of the whole system efficiency and optimum design of SOFC-CHP.

Key words: catalytic combustion, steam reforming, reactor, combined heating and power, heat transfer, fuel cells

中图分类号: 

  • TK11+4

[1] LEMONS R A. Fuel cells for transportation[J]. Journal of Power Sources, 1990, 29(2):251-264.
[2] STEELE B C, HEINZEL A. Materials for fuel-cell technologies[J]. Nature, 2001, 414(6861):345-352.
[3] YEN T H, HONG W T, TSAI Y C, et al. Experimental investigation of 1 kW solid oxide fuel cell system with a natural gas reformer and an exhaust gas burner[J]. Journal of Power Sources, 2010, 195(5):1454-1462.
[4] 李永峰, 董新法, 林维明. 固体氧化物燃料电池的现状和未来[J]. 电源技术, 2002, 26(6):462-465. DOI:10.3969/j.issn. 1002-087X. 2002.06.018. LI Y F, DONG X F, LIN W M. State-of-art and future of solid oxide fuel cell[J]. Chinese Journal of Power Sources, 2002, 26(6):462-465. DOI:10.3969/j.issn.1002-087X.2002.06.018.
[5] RAMASWAMY R C, RAMACHANDRAN P A, DUDUKOVI? M P. Coupling exothermic and endothermic reactions in adiabatic reactors[J]. Chemical Engineering Science, 2008, 63(6):1654-1667.
[6] WANG F, ZHOU J, WANG G Q. Transport characteristic study of methane steam reforming coupling methane catalytic combustion for hydrogen production[J]. International Journal of Hydrogen Energy, 2012, 37(17):13013-13021.
[7] LEE C B, LEE S W, LEE D W, et al. Hydrogen production from methane steam reforming in combustion heat assisted novel micro-channel reactor with catalytic stacking[J]. Industrial and Engineering Chemistry Research, 2013, 52(39):14049-14054.
[8] RYI S K, PARK J S, CHO S H, et al. Novel micro fuel processor for PEMFCs with heat generation by catalytic combustion[J]. Chemical Engineering Journal, 2005, 113(1):47-53.
[9] 漆波, 李隆键, 彭川, 等. 平板微反应器中甲烷蒸气重整与甲烷催化燃烧的耦合分析[J]. 化学反应工程与工艺, 2008, 24(3):272-276. DOI:10.3969/j.issn.1001-7631.2008.03.015. QI B, LI L J, PENG C, et al. Numerical analysis of coupling of methane catalytic combustion and steam reforming in a plate micro-reactor[J]. Chemical Reaction Engineering and Technology, 2008, 24(3), 272-276. DOI:10.3969/j.issn.1001-7631.2008.03.015.
[10] 梅红. 金属基整体式催化剂与反应器的传递及反应特性[D]. 北京:北京化工大学, 2007. MEI H. Transfer and reactive performances of metallic based monolithic catalysts and reactors[D]. Beijing:Beijing University of Chemical Technology, 2007.
[11] 彭昂. kW级燃料电池热电联产系统中天然气重整制氢体系的研究[D]. 广州:华南理工大学, 2011. PENG A. Hydrogen production from nature gas for fuel cell based micro-CHP system[D]. Guangzhou:South China University of Technology, 2011.
[12] PATEL K S, SUNOL A K. Modeling and simulation of methane steam reforming in a thermally coupled membrane reactor[J]. International Journal of Hydrogen Energy, 2007, 32(13):2344-2358.
[13] RYI S K, PARK J S, SONG H C, et al. Fast start-up of micro-channel fuel processor integrated with an igniter for hydrogen combustion[J]. Journal of Power Sources, 2006, 161(2):1234-1240.
[14] YU S, HONG D, LEE Y, et al. Development of a catalytic combustor for a stationary fuel cell power generation system[J]. Renewable Energy, 2010, 35(5):1083-1090.
[15] VENKATARAMAN K, WANAT E C, SCHMIDT L D. Steam reforming of methane and water-gas shift in catalytic wall reactors[J]. AIChE Journal, 2003, 49(5):1277-1284.
[16] ROBBINS F A, ZHU H Y, JACKSON G S. Transient modeling of combined catalytic combustion/CH4 steam reforming[J]. Catalysis Today, 2003, 83(1):141-156.
[17] ZANFIR M, GAVRIILIDIS A. Influence of flow arrangement in catalytic plate reactors for methane steam reforming[J]. Chemical Engineering Research and Design, 2004, 82(2):252-258.
[18] KOLIOS G, GLOCKLER B, GRITSCH A, et al. Heat-integrated reactor concepts for hydrogen production by methane steam reforming[J]. Fuel Cells, 2005, 5(1):52-65.
[19] KANG S, LEE K, YU S, et al. Development of a coupled reactor with a catalytic combustor and steam reformer for a 5 kW solid oxide fuel cell system[J]. Applied Energy, 2014, 114:114-123.
[20] CHANG T G, LEE S M, AHN K Y, et al. An experimental study on the reaction characteristics of a coupled reactor with a catalytic combustor and a steam reformer for SOFC systems[J]. International Journal of Hydrogen Energy, 2012, 37(4):3234-3241.

[1] 刘忠彦, 孙大汉, 金旭, 王天皓, 马一太. CO2管内流动沸腾换热模型评价研究[J]. 化工学报, 2019, 70(1): 56-64.
[2] 刘红, 何阳, 蔡畅, 高久良, 尹洪超. 乙醇和正丁醇添加剂对喷雾冷却的影响[J]. 化工学报, 2019, 70(1): 65-71.
[3] 谢静, 徐明益, 班帅, 孙晖, 周红军. 天然气内重整和外重整下SOFC多场耦合三维模拟分析[J]. 化工学报, 2019, 70(1): 214-226.
[4] 潘璐璐, 吴丹菁, 刘维平. MFC-MEC耦合系统产电性能及处理含镉重金属废水的研究[J]. 化工学报, 2019, 70(1): 242-250.
[5] 胡晨辉, 王亦飞, 包泽彬, 于广锁. 蒸发热水塔内固体颗粒对气泡运动的影响[J]. 化工学报, 2019, 70(1): 39-48.
[6] 汪力, 武卫东, 胡锟. 循环风量对新型家用纯净水机制冷系统及制水性能的影响[J]. 化工学报, 2019, 70(1): 99-106.
[7] 薄琳, 孙宝芝, 干依燃, 丁宏达, 史建新. 一次扰动下直流蒸汽发生器动态换热性能仿真[J]. 化工学报, 2018, 69(S1): 64-71.
[8] 王锋, 刘艳云, 陈泊宏, 王国强. 操作参数对余热回收甲醇水蒸气重整制氢过程的影响[J]. 化工学报, 2018, 69(S1): 102-107.
[9] 张亮, 史忠科. 被动式汽车相变材料储能器的实验分析[J]. 化工学报, 2018, 69(S1): 176-181.
[10] 丁姣, 尹垚骐, 白耀辉, 周向阳, 刘其海, 尹国强. 原位浸渍法制备NiO-BZCYYb阳极支撑SOFCs及电化学性能[J]. 化工学报, 2018, 69(S1): 136-142.
[11] 陈杰, 梁华, 贾敏, 魏彪, 苏志. 大液滴撞击结冰传热过程及介质阻挡放电除冰实验研究[J]. 化工学报, 2018, 69(9): 3825-3834.
[12] 朱礼涛, 罗正鸿. 磁共振成像应用于多相流体动力学研究进展[J]. 化工学报, 2018, 69(9): 3765-3773.
[13] 李晗, 蒲文灏, 杨宁, 毛衍钦, 岳晨, 张琦. 空气-石蜡直接接触换热特性实验研究[J]. 化工学报, 2018, 69(9): 3792-3798.
[14] 沈天绪, 吴建, 闫景春, 沈来宏. 双级燃料反应器的煤化学链燃烧特性[J]. 化工学报, 2018, 69(9): 3965-3974.
[15] 赵海谦, 董明, 汪怀远, 刘立君, 李栋, 刘晓燕. 不同尺寸反应器内H2O2热分解氧化NO特性与氧化产物分析[J]. 化工学报, 2018, 69(9): 4037-4043.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!