化工学报 ›› 2015, Vol. 66 ›› Issue (5): 1970-1975.doi: 10.11949/j.issn.0438-1157.20141720

• 材料化学工程与纳米技术 • 上一篇    下一篇

利用双螺杆挤出机溶解聚丙烯腈

赵圣尧1,2, 朱波2   

  1. 1 山东大学材料液态结构及其遗传性教育部重点实验室, 山东 济南 250061;
    2 山东大学碳纤维工程技术研究中心, 山东 济南 250061
  • 收稿日期:2014-11-18 修回日期:2015-02-07 出版日期:2015-05-05 发布日期:2015-02-09
  • 通讯作者: 朱波 E-mail:13605317708@139.com
  • 基金资助:
    山东省博士基金项目(2008BS04019)。

Dissolving polyacrylonitrile with twin-screw extruder

ZHAO Shengyao1,2, ZHU Bo2   

  1. 1 Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061, Shandong, China;
    2 Carbon Fiber Engineering Research Center of Shandong Province, Shandong University, Jinan 250061, Shandong, China
  • Received:2014-11-18 Revised:2015-02-07 Online:2015-05-05 Published:2015-02-09
  • Supported by:
    supported by the Doctoral Foundation of Shandong Province (2008BS04019).

摘要: 为了提高生产效率,简化操作步骤,并制得质量稳定的高黏均分子量(Mη)聚丙烯腈(PAN)纺丝原液,研究了利用双螺杆挤出机溶解PAN的新方法。二阶螺杆采用T形搭配方式,并在出料口加装过滤装置。溶剂的选择在PAN溶解理论的基础上综合考虑了不同溶剂的溶解能力,找到了适合螺杆溶解要求的混合溶剂。同时将制得的溶液利用干喷湿纺工艺进行纺丝,得到线密度小、高强度的原丝,以验证此体系的可靠性。结果表明此溶解方式可以满足高性能PAN原丝的纺丝要求,同时产出溶液质量稳定且效率更高。

关键词: 双螺杆, 聚丙烯腈, 溶解, 化学反应器, 设计

Abstract: In order to improve production efficiency, simplify procedure, and produce polyacrylonitrile (PAN) spinning dope, which is stable and has high viscosity-average molecular weight (Mη), a new PAN dissolution method with twin-screw extruder was developed. A mode of T-combination was used to frame the second order twin-screw and a filter was installed in the outlet port. A mixed solvent suitable for screw extruder based on PAN dissolution theory and dissolution ability of solvents was selected. The dissolved PAN was used in dry jet wet spinning and high strength fiber with low linear density was made. The twin screw method of dissolving PAN satisfied high performance fiber production requirement, and the solution quality was stable and more productive.

Key words: twin screw extruder, pomlyacrylonitrile, dissolve, chemical reactors, design

中图分类号: 

  • TQ340.61
[1] Wang H, Wang Y, Li T, et al. Gradient distribution of radial structure of PAN-based carbon fiber treated by high temperature [J]. Progress in Natural Science: Materials International, 2014, 24(1): 31-34
[2] Shimada I, Takahagi T, Fukuhara M, et al. FT-IR study of the stabilization reaction of polyacrylonitrile in the production of carbon fibers [J]. Journal of Polymer Science Part A: Polymer Chemistry, 1986, 24(8): 1989-1995
[3] Rahaman M S A, Ismail A F, Mustafa A. A review of heat treatment on polyacrylonitrile fiber [J]. Polymer Degradation and Stability, 2007, 92(8): 1421-1432
[4] Ulbricht M, Oechel A. Photo-bromination and photo-induced graft polymerization as a two-step approach for surface modification of polyacrylonitrile ultrafiltration membranes [J]. European Polymer Journal, 1996, 32(9): 1045-1054
[5] Carder C H, Smith O W, Trecker D J. Two-step coating process[P]: US, 3935330. 1976-1-27
[6] Rajalingam P, Radhakrishxan G. Polyacrylonitrile precursor for carbon fibers [J]. Journal of Macromolecular Science, Part C: Polymer Reviews, 1991, 31(2/3): 301-310
[7] Nie H L, Ma Z H, Fan Z X, et al. Polyacrylonitrile fibers efficiently loaded with tamoxifen citrate using wet-spinning from co-dissolving solution [J]. International Journal of Pharmaceutics, 2009, 373(1): 4-9
[8] Zhao Y, Wang C, Wang Y, et al. Aqueous deposited copolymerization of acrylonitrile and itaconic acid [J]. Journal of Applied Polymer Science, 2009, 111(6): 3163-3169
[9] Evon P, Vandenbossche V, Rigal L. Manufacturing of renewable and biodegradable fiberboards from cake generated during biorefinery of sunflower whole plant in twin-screw extruder: influence of thermo-pressing conditions [J]. Polymer Degradation and Stability, 2012, 97(10): 1940-1947
[10] Senanayake S, Clarke B. A simplified twin screw co-rotating food extruder: design, fabrication and testing [J]. Journal of Food Engineering, 1999, 40(1): 129-137
[11] Harold F Giles Jr, John R Wagner Jr. Extrusion [M]. 2nd ed. New York: Crescent Associates, Inc., 2014: 125-148
[12] Eitzlmayr A, Koscher G, Reynolds G, et al. Mechanistic modeling of modular co-rotating twin-screw extruders [J]. International Journal of Pharmaceutics, 2014, 474(1): 157-176
[13] Maridass B, Gupta B R. Performance optimization of a counter rotating twin screw extruder for recycling natural rubber vulcanizates using response surface methodology [J]. Polymer Testing, 2004, 23(4): 377-385
[14] Kumar A, Vercruysse J, Bellandi G, et al. Experimental investigation of granule size and shape dynamics in twin-screw granulation [J]. International Journal of Pharmaceutics, 2014, 475(1): 485-495
[15] Garge S C, Wetzel M D, Ogunnaike B A. Quantification of the melting process in a co-rotating twin-screw extruder: a hybrid modeling approach [J]. Polymer Engineering & Science, 2007, 47(7): 1040-1051
[16] Trifkovic M, Sheikhzadeh M, Choo K, et al. Model identification of a twin screw extruder for thermoplastic vulcanizate (TPV) applications [J]. Polymer Engineering & Science, 2010, 50(6): 1168-1177
[17] Iedema P D, Remerie K, van der Ham M, et al. Controlled peroxide-induced degradation of polypropylene in a twin-screw extruder: change of molecular weight distribution under conditions controlled by micromixing [J]. Chemical Engineering Science, 2011, 66(22): 5474-5486
[18] Mu B, Thompson M R. Examining the mechanics of granulation with a hot melt binder in a twin-screw extruder [J]. Chemical Engineering Science, 2012, 81: 46-56
[19] Poulesquen A, Vergnes B. A study of residence time distribution in co-rotating twin-screw extruders(Ⅰ): theoretical modeling [J]. Polymer Engineering & Science, 2003, 43(12): 1841-1848
[20] Vergnes B, Berzin F. Modeling of reactive systems in twin-screw extrusion: challenges and applications [J]. Comptes Rendus Chimie, 2006, 9(11): 1409-1418
[21] Dhenge R M, Cartwright J J, Doughty D G, et al. Twin screw wet granulation: effect of powder feed rate[J]. Advanced Powder Technology, 2011, 22(2): 162-166
[22] Nishio Y, Roy S K, Manley R. Blends of cellulose with polyacrylonitrile prepared from N, N-dimethylacetamide-lithium chloride solutions [J]. Polymer, 1987, 28(8): 1385-1390
[23] Oya N, Johnson D J. Longitudinal compressive behavior and microstructure of PAN-based carbon fibers [J]. Carbon, 2001, 39(5): 635-645
[1] 李挺, 贾卓泰, 张庆华, 杨超, 毛在砂. 几种单层桨搅拌槽内宏观混合特性的比较[J]. 化工学报, 2019, 70(1): 32-38.
[2] 邓伟峰, 蒋珍华, 刘少帅, 张安阔, 吴亦农. 高温区大冷量脉管制冷机优化设计与实验特性[J]. 化工学报, 2019, 70(1): 107-115.
[3] 沈天绪, 吴建, 闫景春, 沈来宏. 双级燃料反应器的煤化学链燃烧特性[J]. 化工学报, 2018, 69(9): 3965-3974.
[4] 李玮豪, 张小松. 无霜空气源热泵系统夏季运行性能初步实验[J]. 化工学报, 2018, 69(9): 3975-3982.
[5] 张杰, 李涛. 甲烷化梅花状催化剂CFD计算及改进[J]. 化工学报, 2018, 69(7): 2985-2992.
[6] 葛敬, 朱家骅, 夏素兰, 刘仕忠. 二水硫酸钙在硫酸铵溶液中的溶解度测定[J]. 化工学报, 2018, 69(7): 2829-2837.
[7] 王洪海, 王宝正, 李春利, 姬鹏宇. 垂直双隔板隔壁塔分离四组分的模拟优化和实验研究[J]. 化工学报, 2018, 69(7): 3050-3058.
[8] 周文晋, 江苇, 邓春, 冯霄. 工业多水源供水网络优化设计[J]. 化工学报, 2018, 69(6): 2560-2566.
[9] 邹久朋, 刘学武, 徐伟华, 代玉强. 新型高效中部阻波腔式气波管性能研究[J]. 化工学报, 2018, 69(5): 1906-1914.
[10] 刘慧, 张林, 杨晓晰, 李东刚. 缝式低NOx燃烧器结构的优化模拟[J]. 化工学报, 2018, 69(4): 1723-1730.
[11] 欧阳博, 孔明, 钱超, 陈新志. 二苯基亚砜在有机溶剂中的溶解度测定和拟合[J]. 化工学报, 2018, 69(4): 1307-1314.
[12] 金梧凤, 于斌, 高攀, 徐磊. R32与新型PVE油的互溶性及其对空调性能的影响[J]. 化工学报, 2018, 69(4): 1631-1637.
[13] 王泽普, 王飞波, 李敏霞, 马一太. 双蒸发器流化冰制冰机试验研究与分析[J]. 化工学报, 2018, 69(4): 1656-1662.
[14] 韩红桂, 刘峥, 乔俊飞. 基于区间二型模糊神经网络污水处理过程溶解氧浓度控制[J]. 化工学报, 2018, 69(3): 1182-1190.
[15] 乔俊飞, 马士杰, 杨翠丽. 基于ROLS算法的递归RBF神经网络结构设计[J]. 化工学报, 2018, 69(3): 1191-1199.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!