化工学报 ›› 2021, Vol. 72 ›› Issue (2): 633-652.doi: 10.11949/0438-1157.20201860

• 综述与专论 • 上一篇    下一篇

反应密度泛函理论的构建与初步应用

唐伟强1(),谢鹏2,徐小飞1,赵双良1,2()   

  1. 1.华东理工大学化学工程联合国家重点实验室,上海 200237
    2.广西大学化学化工学院,广西石化资源加工及 过程强化技术重点实验室,广西 南宁 530004
  • 收稿日期:2020-12-17 修回日期:2021-01-14 出版日期:2021-02-05 发布日期:2021-01-18
  • 通讯作者: 赵双良 E-mail:wqtang@ecust.edu.cn;szhao@gxu.edu.cn
  • 作者简介:唐伟强(1991—),男,博士,讲师,wqtang@ecust.edu.cn
  • 基金资助:
    国家自然科学基金项目(21878078)

Development and applications of reaction density functional theory

TANG Weiqiang1(),XIE Peng2,XU Xiaofei1,ZHAO Shuangliang1,2()   

  1. 1.State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
    2.Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China
  • Received:2020-12-17 Revised:2021-01-14 Online:2021-02-05 Published:2021-01-18
  • Contact: ZHAO Shuangliang E-mail:wqtang@ecust.edu.cn;szhao@gxu.edu.cn

摘要:

提高化学反应的选择性和转化率是发展绿色化学的重要内容。大部分化学反应都在溶液中发生,溶剂对于反应速率、平衡过程甚至反应机理都有重要的影响。溶剂效应对化学反应影响的理论研究比较缺乏。综述了近年来发展的理论模型及最近本课题组提出的反应密度泛函理论,分别介绍了反应密度泛函理论在水相、有机相、界面体系和限域体系中的应用,分析了不同反应溶剂结构对化学反应自由能分布的影响,总结了溶剂效应的影响机制,最后展望了自洽反应密度泛函理论的构建、反应-扩散耦合研究、聚合物反应密度泛函理论及反应密度泛函理论在反应溶剂筛选、界面反应和电解液设计中的应用。

关键词: 绿色化学, 化学反应, 密度泛函理论, 溶剂, 热力学

Abstract:

It is an important issue in green chemistry to improve the selectivity and conversion rate of chemical reactions. Most chemical reactions occur in solution. Solvent plays an important role in determining reaction rate, equilibrium process, and the reaction mechanism. Theories and methods that could describe solvent effect quantitatively in molecular scale are still lacking. This review collects the theoretical models developed in recent years and highlights the reaction density functional theory (RxDFT) recently proposed by our group. The applications of RxDFT in the aqueous solution, organic solution, interfacial system, and confined system are introduced. The effects of different reacting environments on the free energy profiles of chemical reaction are analyzed, and the mechanisms of solvent effect are summarized. In addition, the construction of self-consistent reaction density functional theory (sc-RxDFT), reaction-diffusion coupling, polymer reaction density functional theory, and the application of RxDFT in the screening of reacting solvents, interface reactions and electrolyte design for electrochemistry batteries are prospected.

Key words: green chemistry, chemical reaction, density functional theory, solvent, thermodynamics

中图分类号: 

  • TQ 03-3
1 何良年. 绿色化学基本原理[M]. 北京: 科学出版社, 2018.
He L N. Fundamentals of Green Chemistry[M]. Beijing: Science Press, 2018.
2 Liu H, Jiang T, Han B, et al. Selective phenol hydrogenation to cyclohexanone over a dual supported Pd-Lewis acid catalyst[J]. Science, 2009, 326(5957): 1250-1252.
3 Kong D Y, Moon P J, Lui E K J, et al. Direct reversible decarboxylation from stable organic acids in dimethylformamide solution[J]. Science, 2020, 369(6503): 557-561.
4 Wang W R, Rao H S, Fang W J, et al. Enhancing loading amount and performance of quantum-dot-sensitized solar cells based on direct adsorption of quantum dots from bicomponent solvents[J]. The Journal of Physical Chemistry Letters, 2019, 10(2): 229-237.
5 Chew A K, Walker T W, Shen Z Z, et al. Effect of mixed-solvent environments on the selectivity of acid-catalyzed dehydration reactions[J]. ACS Catalysis, 2020, 10(3): 1679-1691.
6 Hirata F. Molecular Theory of Solvation[M]. Dordrecht: Kluwer Academic Publishers, 2004.
7 Mennucci B, Cammi R. Continuum Solvation Models in Chemical Physics[M]. Chichester, UK:John Wiley & Sons, Ltd, 2007.
8 Tomasi J, Mennucci B, Cammi R. Quantum mechanical continuum solvation models[J]. Chemical Reviews, 2005, 105(8): 2999-3094.
9 Reichardt C, Welton T. Solvents and Solvent Effects in Organic Chemistry[M]. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010.
10 Carey F A. Organic Chemistry[M]. The McGraw-Hill Companies, 2004.
11 Ahn Y H, Moon S, Koh D Y, et al. One-step formation of hydrogen clusters in clathrate hydrates stabilized via natural gas blending[J]. Energy Storage Materials, 2020, 24: 655-661.
12 Hong S J, Moon S, Lee Y, et al. Investigation of thermodynamic and kinetic effects of cyclopentane derivatives on CO2 hydrates for potential application to seawater desalination[J]. Chemical Engineering Journal, 2019, 363: 99-106.
13 Kyung D, Lee W. Structure, stability, and storage capacity of CO2+N2O mixed hydrates for the storage of CO2+N2O mixture gas[J]. International Journal of Greenhouse Gas Control, 2018, 76: 32-38.
14 Li K Y, Shi R L, Tang L L, et al. Cage fusion from bi-cages to tri-cages during nucleation of methane hydrate: a DFT-D simulation[J]. Physical Chemistry Chemical Physics, 2019, 21(18): 9150-9158.
15 Andanson J M, Baiker A. Exploring catalytic solid/liquid interfaces by in situ attenuated total reflection infrared spectroscopy[J]. Chemical Society Reviews, 2010, 39(12): 4571-4584.
16 Miertuš S, Tomasi J. Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes[J]. Chemical Physics, 1982, 65(2): 239-245.
17 Miertuš S, Scrocco E, Tomasi J. Electrostatic interaction of a solute with a continuum. A direct utilizaion of ab initio molecular potentials for the prevision of solvent effects[J]. Chemical Physics, 1981, 55(1): 117-129.
18 Kuechler E R, York D M. Quantum mechanical study of solvent effects in a prototype SN2 reaction in solution: Cl-attack on CH3Cl[J]. J. Chem. Phys., 2014, 140(5): 054109.
19 Car R, Parrinello M. Unified approach for molecular dynamics and density-functional theory[J]. Physical Review Letters, 1985, 55(22): 2471-2474.
20 Vreven T, Frisch M J, Kudin K N, et al. Geometry optimization with QM/MM methods (II): Explicit quadratic coupling[J]. Molecular Physics, 2006, 104(5/6/7): 701-714.
21 Laino T, Mohamed F, Laio A, et al. An efficient real space multigrid QM/MM electrostatic coupling[J]. Journal of Chemical Theory and Computation, 2005, 1(6): 1176-1184.
22 Orozco M, Luque F J. Theoretical methods for the description of the solvent effect in biomolecular systems[J]. Chemical Reviews, 2000, 100(11): 4187-4226.
23 Muñoz J, Barril X, Luque F J, et al. Partitioning of free energies of solvation into fragment contributions: applications in drug design[M]//Fundamentals of Molecular Similarity. Springer, 2001: 143-168.
24 Vreven T, Morokuma K. On the application of the IMOMO (integrated molecular orbital + molecular orbital) method[J]. Journal of Computational Chemistry, 2000, 21(16): 1419-1432.
25 Mikkelsen K V, Jørgensen P, Jensen H J A. A multiconfiguration self-consistent reaction field response method[J]. The Journal of Chemical Physics, 1994, 100(9): 6597-6607.
26 Bishop D M. Aspects of non-linear-optical calculations[J]. Advances in Quantum Chemistry, 1994, 25: 1-45.
27 Shelton D P, Rice J E. Measurements and calculations of the hyperpolarizabilities of atoms and small molecules in the gas phase[J]. Chemical Reviews, 1994, 94(1): 3-29.
28 Galván I F, Sánchez M L, Martı́n M E, et al. ASEP/MD: a program for the calculation of solvent effects combining QM/MM methods and the mean field approximation[J]. Computer Physics Communications, 2003, 155(3): 244-259.
29 Sánchez M L, Martín M E, Aguilar M A, et al. Solvent effects by means of averaged solvent electrostatic potentials: coupled method[J]. Journal of Computational Chemistry, 2000, 21(9): 705-715.
30 Hansen J P, McDonald I R. Theory of Simple Liquids[M]. Amsterdam: Elsevier, 1986.
31 Hirata F, Sato H, Ten-no S, et al. The RISM-SCF/MCSCF approach for chemical processes in solutions[M]//Computational Biochemistry and Biophysics. CRC Press, 2001.
32 Chandler D, Andersen H C. Optimized cluster expansions for classical fluids (Ⅱ): Theory of molecular liquids[J]. The Journal of Chemical Physics, 1972, 57(5): 1930-1937.
33 Hirata F, Pettitt B M, Rossky P J. Application of an extended RISM equation to dipolar and quadrupolar fluids[J]. The Journal of Chemical Physics, 1982, 77(1): 509-520.
34 Hirata F, Rossky P J. An extended RISM equation for molecular polar fluids[J]. Chemical Physics Letters, 1981, 83(2): 329-334.
35 Hirata F, Rossky P J, Pettitt B M. The interionic potential of mean force in a molecular polar solvent from an extended RISM equation[J]. The Journal of Chemical Physics, 1983, 78(6): 4133-4144.
36 Andersen H C, Chandler D, Weeks J D. Optimized cluster expansions for classical fluids (Ⅲ): Applications to ionic solutions and simple liquids[J]. The Journal of Chemical Physics, 1972, 57(7): 2626-2631.
37 Hudson S, Andersen H C. Optimized cluster expansions for classical fluids (Ⅳ): Primitive model electrolyte solutions[J]. The Journal of Chemical Physics, 1974, 60(5): 2188.
38 Ten-no S, Hirata F, Kato S. A hybrid approach for the solvent effect on the electronic structure of a solute based on the RISM and Hartree-Fock equations[J]. Chemical Physics Letters, 1993, 214(3/4): 391-396.
39 Ten-no S, Hirata F, Kato S. Reference interaction site model self-consistent field study for solvation effect on carbonyl compounds in aqueous solution[J]. The Journal of Chemical Physics, 1994, 100(10): 7443-7453.
40 Sato H, Hirata F. Theoretical study for autoionization of liquid water:   temperature dependence of the ionic product (pKw)[J]. The Journal of Physical Chemistry A, 1998, 102(15): 2603-2608.
41 Ishida T, Hirata F, Sato H, et al. Molecular theory of solvent effect on Keto-Enol tautomers of formamide in aprotic solvents:   RISM-SCF approach[J]. The Journal of Physical Chemistry B, 1998, 102(11): 2045-2050.
42 Wesolowski T A, Weber J. Kohn-Sham equations with constrained electron density: an iterative evaluation of the ground-state electron density of interacting molecules[J]. Chemical Physics Letters, 1996, 248(1/2): 71-76.
43 Zhao S L, Liu Y, Chen X Q, et al. Unified framework of multiscale density functional theories and its recent applications[J]. Advances in Chemical Engineering, 2015, 47: 1-83.
44 Wu J Z. Density functional theory for liquid structure and thermodynamics[M]//Molecular Thermodynamics of Complex Systems. Berlin Heidelberg: Springer, 2008.
45 Liu Y, Zhao S L, Wu J Z. A site density functional theory for water: application to solvation of amino acid side chains[J]. Journal of Chemical Theory and Computation, 2013, 9(4): 1896-1908.
46 Lian C, Cai C, Shen X J, et al. Improved oxidation of hydrogen off-gas by hydrophobic surface modification: a multiscale density functional theory study[J]. Particuology, 2019, 44: 28-35.
47 Wu J Z. Classical density functional theory for molecular systems[M]//Variational Methods in Molecular Modeling. Singapore: Springer, 2017.
48 Wu J Z. Density functional theory for chemical engineering: from capillarity to soft materials[J]. AIChE Journal, 2006, 52(3): 1169-1193.
49 Wu J Z, Li Z D. Density-functional theory for complex fluids[J]. Annual Review of Physical Chemistry, 2007, 58: 85-112.
50 Zhao S L, Jin Z H, Wu J Z. New theoretical method for rapid prediction of solvation free energy in water[J]. The Journal of Physical Chemistry B, 2011, 115(21): 6971-6975.
51 Wu H G, Li Y, Kadirov D, et al. Efficient molecular approach to quantifying solvent-mediated interactions[J]. Langmuir, 2017, 33(42): 11817-11824.
52 Liu Y, Liu H L, Hu Y, et al. Development of a density functional theory in three-dimensional nanoconfined space: H2 storage in metal-organic frameworks[J]. The Journal of Physical Chemistry B, 2009, 113(36): 12326-12331.
53 Liu Y, Liu H L, Hu Y, et al. Density functional theory for adsorption of gas mixtures in metal-organic frameworks[J]. The Journal of Physical Chemistry B, 2010, 114(8): 2820-2827.
54 Lian C, Zhao S, Liu H, et al. Time-dependent density functional theory for the charging kinetics of electric double layer containing room-temperature ionic liquids[J]. The Journal of Chemical Physics, 2016, 145(20): 204707.
55 Zhao S L, Wu J Z. Self-consistent equations governing the dynamics of nonequilibrium colloidal systems[J]. The Journal of Chemical Physics, 2011, 134(5): 054514.
56 Ma M M, Zhao S L, Liu H L, et al. Microscopic insights into the efficiency of capacitive mixing process[J]. AIChE Journal, 2017, 63(6): 1785-1791.
57 Ma M M, Zhao S L, Xu Z L. Investigation of dielectric decrement and correlation effects on electric double-layer capacitance by self-consistent field model[J]. Communications in Computational Physics, 2016, 20(2): 441-458.
58 Petrosyan S A, Briere J F, Roundy D, et al. Joint density-functional theory for electronic structure of solvated systems[J]. Physical Review B, 2007, 75(20): 205105.
59 Sundararaman R, Arias T A. Efficient classical density-functional theories of rigid-molecular fluids and a simplified free energy functional for liquid water[J]. Computer Physics Communications, 2014, 185(3): 818-825.
60 Sundararaman R. Joint density-functional methods for first-principles chemistry in solution[D]. Cornell: Cornell University, 2013.
61 Sundararaman R, Letchworth-Weaver K, Schwarz K A, et al. JDFTx: software for joint density-functional theory[J]. SoftwareX, 2017, 6: 278-284.
62 Deng S Z, Cai W. Extending the fast multipole method for charges inside a dielectric sphere in an ionic solvent: high-order image approximations for reaction fields[J]. Journal of Computational Physics, 2007, 227(2): 1246-1266.
63 Lin Y, Baumketner A, Deng S, et al. An image-based reaction field method for electrostatic interactions in molecular dynamics simulations of aqueous solutions[J]. J. Chem. Phys., 2009, 131(15): 154103.
64 Lin Y, Baumketner A, Song W, et al. Ionic solvation studied by image-charge reaction field method[J]. J. Chem. Phys., 2011, 134(4): 044105.
65 Qin P, Xu Z, Cai W, et al. Image charge methods for a three-dielectric-layer hybrid solvation model of biomolecules[J]. Communications in Computational Physics, 2009, 6(5): 955-977.
66 Tang W Q, Cai C, Zhao S L, et al. Development of reaction density functional theory and its application to glycine tautomerization reaction in aqueous solution[J]. The Journal of Physical Chemistry C, 2018, 122(36): 20745-20754.
67 Laidler K J, King M C. Development of transition-state theory[J]. The Journal of Physical Chemistry, 1983, 87(15): 2657-2664.
68 Berg M, Harris A L, Harris C B. Rapid solvent-induced recombination and slow energy relaxation in a simple chemical reaction: picosecond studies of iodine photodissociation in CCl4[J]. Physical Review Letters, 1985, 54(9): 951-954.
69 Rosenthal S J, Xie X L, Du M, et al. Femtosecond solvation dynamics in acetonitrile: observation of the inertial contribution to the solvent response[J]. The Journal of Chemical Physics, 1991, 95(6): 4715-4718.
70 Cai C, Tang W Q, Qiao C Z, et al. A reaction density functional theory study of solvent effect in the nucleophilic addition reactions in aqueous solution[J]. Green Energy & Environment, 2020, DOI: 10.1016/j.gee.2020.11.028.
doi: 10.1016/j.gee.2020.11.028
71 Zhao S, Ramirez R, Vuilleumier R, et al. Molecular density functional theory of solvation: from polar solvents to water[J]. The Journal of Chemical Physics, 2011, 134(19): 194102.
72 Smith M B, March J. March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure[M]. John Wiley & Sons, 2007.
73 Wada G, Tamura E, Okina M, et al. On the ratio of zwitterion form to uncharged form of glycine at equilibrium in various aqueous media[J]. Bulletin of the Chemical Society of Japan, 1982, 55(10): 3064-3067.
74 Császár A G. On the structures of free glycine and α-alanine[J]. Journal of Molecular Structure, 1995, 346: 141-152.
75 Tortonda F R, Pascual-Ahuir J L, Silla E, et al. Why is glycine a zwitterion in aqueous solution? A theoretical study of solvent stabilising factors[J]. Chemical Physics Letters, 1996, 260(1/2): 21-26.
76 Tortonda F R, Pascual-Ahuir J L, Silla E, et al. Aminoacid zwitterions in solution: geometric, energetic, and vibrational analysis using density functional theory-continuum model calculations[J]. The Journal of Chemical Physics, 1998, 109(2): 592-603.
77 Balta B, Aviyente V. Solvent effects on glycine (Ⅰ): A supermolecule modeling of tautomerization via intramolecular proton transfer[J]. Journal of Computational Chemistry, 2003, 24(14): 1789-1802.
78 Tortonda F R, Silla E, Tuñón I, et al. Intramolecular proton transfer of serine in aqueous solution. Mechanism and energetics[J]. Theoretical Chemistry Accounts, 2000, 104(2): 89-95.
79 Nagy P I, Noszál B. Theoretical study of the tautomeric/conformational equilibrium of aspartic acid zwitterions in aqueous solution[J]. The Journal of Physical Chemistry A, 2000, 104(29): 6834-6843.
80 Slifkin M A, Ali S M. Thermodynamic parameters of the activation of glycine zwitterion protonation reactions[J]. Journal of Molecular Liquids, 1984, 28(4): 215-221.
81 Tuñón I, Silla E, Ruiz-López M F. On the tautomerization process of glycine in aqueous solution[J]. Chemical Physics Letters, 2000, 321(5/6): 433-437.
82 Tolosa S, Hidalgo A, Sansón J A. Amino acid tautomerization reactions in aqueous solution via concerted and assisted mechanisms using free energy curves from MD simulation[J]. The Journal of Physical Chemistry B, 2012, 116(43): 13033-13044.
83 Senn H M, Margl P M, Schmid R, et al. Ab initio molecular dynamics with a continuum solvation model[J]. The Journal of Chemical Physics, 2003, 118(3): 1089-1100.
84 Bandyopadhyay P, Gordon M S, Mennucci B, et al. An integrated effective fragment-polarizable continuum approach to solvation: theory and application to glycine[J]. The Journal of Chemical Physics, 2002, 116(12): 5023.
85 Leung K, Rempe S B. Ab initio molecular dynamics study of glycine intramolecular proton transfer in water[J]. The Journal of Chemical Physics, 2005, 122(18): 184506.
86 Resasco D E, Wang B, Crossley S. Zeolite-catalysed C—C bond forming reactions for biomass conversion to fuels and chemicals[J]. Catalysis Science & Technology, 2016, 6(8): 2543-2559.
87 Wang B, Wright D, Cliffel D, et al. Ionization-enhanced decomposition of 2, 4, 6-trinitrotoluene (TNT) molecules[J]. The Journal of Physical Chemistry A, 2011, 115(28): 8142-8146.
88 Edsall J T, Blanchard M H. The activity ratio of zwitterions and uncharged molecules in ampholyte solutions. The dissociation constants of amino acid esters[J]. Journal of the American Chemical Society, 1933, 55(6): 2337-2353.
89 Sharma R, Kumar N, Yaday R. Chemistry and pharmacological importance of 1, 3, 4-oxadiazole derivatives[J]. Research & Reviews: Journal of Chemistry, 2015, 4(2): 1-27.
90 Burcu Arslan N, Özdemir N, Dayan O, et al. Direct and solvent-assisted thione-thiol tautomerism in 5-(thiophen-2-yl)-1, 3, 4-oxadiazole-2(3H)-thione: experimental and molecular modeling study[J]. Chemical Physics, 2014, 439: 1-11.
91 Fershtat L L, Epishina M A, Ovchinnikov I V, et al. Side-chain prototropic tautomerism of 4-hydroxyfuroxans in methylation reactions[J]. Tetrahedron Letters, 2016, 57(50): 5685-5689.
92 Bondock S, Adel S, Etman H A, et al. Synthesis and antitumor evaluation of some new 1, 3, 4-oxadiazole-based heterocycles[J]. European Journal of Medicinal Chemistry, 2012, 48: 192-199.
93 Omar F, Mahfouz N, Design Rahman M., synthesis and antiinflammatory activity of some1, 3, 4-oxadiazole derivatives[J]. European Journal of Medicinal Chemistry, 1996, 31(10): 819-825.
94 Ghiran D, Schwartz I, Simiti I. Antimitotic activity of 2-amino-1, 3, 4-oxadiazoles[J]. Farmacia, 1974, 22: 141.
95 Yale H L, Losee K. 2-Amino-5-substituted 1, 3, 4-oxadiazoles and 5-imino-2-substituted Δ2-1, 3, 4-oxadiazolines. A group of novel muscle relaxants[J]. Journal of Medicinal Chemistry, 1966, 9(4): 478-483.
96 Tang W Q, Yu H P, Cai C, et al. Solvent effects on a derivative of 1, 3, 4-oxadiazole tautomerization reaction in water: a reaction density functional theory study[J]. Chemical Engineering Science, 2020, 213: 115380.
97 Xie J, Otto R, Mikosch J, et al. Identification of atomic-level mechanisms for gas-phase X-+CH3Y SN2 reactions by combined experiments and simulations[J]. Accounts of Chemical Research, 2014, 47(10): 2960-2969.
98 Abboud J U M, Notario R, Bertrán J, et al. One century of physical organic chemistry: the Menshutkin reaction[M]//Progress in Physical Organic Chemistry. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007: 1-182.
99 Xie J, Hase W L. Rethinking the SN2 reaction[J]. Science, 2016, 352(6281): 32-33.
100 Ingold C K. Structure and Mechanism in Organic Chemistry[M]. Ithaca: Cornell University Press, 1953.
101 Olmstead W N, Brauman J I. Gas-phase nucleophilic displacement reactions[J]. Journal of Mass Spectrometry, 1995, 30(12): 1653-1662.
102 Chabinyc M L, Craig S L, Regan C K, et al. Gas-phase ionic reactions: dynamics and mechanism of nucleophilic displacements[J]. Science, 1998, 279(5358): 1882-1886.
103 Hwang J K, King G, Creighton S, et al. Simulation of free energy relationships and dynamics of SN2 reactions in aqueous solution[J]. Journal of the American Chemical Society, 1988, 110(16): 5297-5311.
104 Mikosch J, Trippel S, Eichhorn C, et al. Imaging nucleophilic substitution dynamics[J]. Science, 2008, 319(5860): 183-186.
105 Chandrasekhar J, Smith S F, Jorgensen W L. SN2 reaction profiles in the gas phase and aqueous solution[J]. Journal of the American Chemical Society, 1984, 106(10): 3049-3050.
106 Manikandan P, Zhang J X, Hase W L. Chemical dynamics simulations of X- + CH3Y → XCH3 + Y- gas-phase SN2 nucleophilic substitution reactions. Nonstatistical dynamics and nontraditional reaction mechanisms[J]. The Journal of Physical Chemistry A, 2012, 116(12): 3061-3080.
107 Doi K, Togano E, Xantheas S S, et al. Microhydration effects on the intermediates of the SN2 reaction of iodide anion with methyl iodide[J]. Angewandte Chemie International Edition, 2013, 52(16): 4380-4383.
108 Beronius P, Tyrrell V, Tufte T, et al. Electrochemical methods in kinetic studies of isotopic exchange reactions (I): Application to systems of the type RI + I*- ⇌RI* + I-[J]. Acta Chemica Scandinavica, 1961, 15: 1151-1164.
109 Gao J L. A priori computation of a solvent-enhanced SN2 reaction profile in water: the Menshutkin reaction[J]. Journal of the American Chemical Society, 1991, 113(20): 7796-7797.
110 Gao J L, Xia X F. A two-dimensional energy surface for a type II SN2 reaction in aqueous solution[J]. Journal of the American Chemical Society, 1993, 115(21): 9667-9675.
111 O'Hair R A J, Davico G E, Hacaloglu J, et al. Measurements of solvent and secondary kinetic isotope effects for the gas-phase SN2 reactions of fluoride with methyl halides[J]. Journal of the American Chemical Society, 1994, 116(8): 3609-3610.
112 Bohme D K, Rakshit A B, MacKay G I. Bridging the gap between the gas phase and solution: transition in the kinetics of acid-base reactions[J]. Journal of the American Chemical Society, 1982, 104(4): 1100-1101.
113 Bohme D K, Raksit A B. Gas-phase measurements of the influence of stepwise solvation on the kinetics of nucleophilic displacement reactions with chloromethane and bromomethane at room temperature[J]. Journal of the American Chemical Society, 1984, 106(12): 3447-3452.
114 Bohme D K, Raksit A B. Gas-phase measurements of the influence of stepwise solvation on the kinetics of SN2 reactions of solvated F with CH3Cl and CH3Br and of solvated Cl with CH3Br[J]. Canadian Journal of Chemistry, 1985, 63(11): 3007-3011.
115 Hierl P M, Ahrens A F, Henchman M, et al. Nucleophilic displacement as a function of hydration number and temperature: rate constants and product distributions for OD-(D2O)0, 1, 2, 3 + CH3Cl at 200—500 K[J]. Journal of the American Chemical Society, 1986, 108(11): 3142-3143.
116 Henchman M, Paulson J F, Hierl P M. Nucleophilic displacement with a selectively solvated nucleophile: the system hydrated hydroxide ion (OH-•H2O) + bromomethane at 300 K[J]. Journal of the American Chemical Society, 1983, 105(16): 5509-5510.
117 Cai C, Tang W, Qiao C, et al. A reaction density functional theory study of the solvent effect in prototype SN2 reactions in aqueous solution[J]. Physical Chemistry Chemical Physics, 2019, 21(45): 24876-24883.
118 Tang W Q, Zhao J H, Jiang P, et al. Solvent effects on the symmetric and asymmetric SN2 reactions in acetonitrile solution: a reaction density functional theory study[J]. The Journal of Physical Chemistry B, 2020, 124(15): 3114-3122.
119 Castejon H, Wiberg K B. Solvent effects on methyl transfer reactions (1): The Menshutkin reaction[J]. Journal of the American Chemical Society, 1999, 121(10): 2139-2146.
120 Streitwieser A. Solvolytic displacement reactions at saturated carbon atoms[J]. Chemical Reviews, 1956, 56(4): 571-752.
121 Charton M. Steric effects (Ⅲ): Bimolecular nucleophilic substitution[J]. Journal of the American Chemical Society, 1975, 97(13): 3694-3697.
122 Miners S, Fay M W, Baldoni M, et al. Steric and electronic control of 1, 3-dipolar cycloaddition reactions in carbon nanotube nanoreactors[J]. The Journal of Physical Chemistry C, 2019, 123(10): 6294-6302.
123 Fu J, Feng X, Liu Y B, et al. Mechanistic insights into the pore confinement effect on bimolecular and monomolecular cracking mechanisms of n-octane over HY and HZSM-5 zeolites: a DFT study[J]. The Journal of Physical Chemistry C, 2018, 122(23): 12222-12230.
124 Trembleau L, Rebek J. Helical conformation of alkanes in a hydrophobic cavitand[J]. Science, 2003, 301(5637): 1219-1220.
125 Endo O, Nakamura M, Amemiya K, et al. Compression-induced conformation and orientation changes in an n-alkane monolayer on a Au(111) surface[J]. Langmuir, 2017, 33(16): 3934-3940.
126 Scarso A, Trembleau L, Rebek J. Encapsulation induces helical folding of alkanes[J]. Angewandte Chemie International Edition, 2003, 42(44): 5499-5502.
127 Jordan J H, Gibb B C. Molecular containers assembled through the hydrophobic effect[J]. Chemical Society Reviews, 2015, 44(2): 547-585.
128 Yu X C, Tang W Q, Zhao T, et al. Confinement effect on molecular conformation of alkanes in water-filled cavitands: a combined quantum/classical density functional theory study[J]. Langmuir, 2018, 34(45): 13491-13496.
129 Keil F J. Diffusion and reaction in porous networks[J]. Catalysis Today, 1999, 53(2): 245-258.
130 刘洪来, 王建国. 化工过程中的表(界)面科学与工程[M]//化学工程学科前沿与展望. 北京: 科学出版社, 2012.
Liu H L, Wang J G. Surface (interfacial) science and engineering in the process of chemical engineering[M]//Frontiers and Prospects of Chemical Engineering. Beijing: Science Press, 2012.
131 Mathew K, Sundararaman R, Letchworth-Weaver K, et al. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways[J]. The Journal of Chemical Physics, 2014, 140(8): 084106.
132 Zhang X Q, Chen X, Hou L P, et al. Regulating anions in the solvation sheath of lithium ions for stable lithium metal batteries[J]. ACS Energy Letters, 2019, 4(2): 411-416.
[1] 陈博亚, 李明宴, 朱雨航, 彭昌军, 刘洪来. 利用二维流体分子热力学模型计算气体混合物在固体界面的吸附等温线[J]. 化工学报, 2021, 72(2): 913-920.
[2] 何鹏鹏, 赵颂, 毛晨岳, 王志, 王纪孝. 耐溶剂复合纳滤膜的研究进展[J]. 化工学报, 2021, 72(2): 727-747.
[3] 吕全明, 孙伟振, 赵玲. 连四甲苯液相氧化过程热力学分析及动力学模拟[J]. 化工学报, 2021, 72(2): 1009-1017.
[4] 吉远辉, 陈俏, 翁靖云. 聚合物辅料对阿司匹林结晶动力学影响机制的非平衡热力学建模及预测[J]. 化工学报, 2021, 72(1): 508-520.
[5] 王琛璐, 王艳磊, 赵秋, 吕玉苗, 霍锋, 何宏艳. 低维纳米受限离子液体的研究进展[J]. 化工学报, 2021, 72(1): 366-383.
[6] 葛冰青, 阴义轩, 王亚溪, 张宏伟, 袁珮. 溶剂对丁腈橡胶溶解、尺寸、结构和催化加氢的影响研究[J]. 化工学报, 2021, 72(1): 543-554.
[7] 王志国, 冯艳, 杨文哲, 张聪慧, 李栋, 刘立君. 基于REV的孔隙型多孔介质导热分析模型[J]. 化工学报, 2020, 71(S2): 118-126.
[8] 杨肖峰, 肖光明, 桂业伟, 刘磊, 杜雁霞. 考虑非平衡效应的对流换热特性耦合模拟及热壁修正新思路[J]. 化工学报, 2020, 71(S2): 152-160.
[9] 周一帆, 姚丛雪, 王靖文, 郭文文, 宋磊, 牧小卫, 胡源. 大豆的热分解特性及其动力学探究[J]. 化工学报, 2020, 71(S2): 187-194.
[10] 冯辉君, 陈林根, 吴志祥, 唐威, 石俊朝. 基于理论的有机工质管壳式冷凝器构形优化[J]. 化工学报, 2020, 71(S2): 98-103.
[11] 裴后举, 蒋彦龙, 施红, 崔永龙, 陈常栋, 钱晓辉. 基于M-L湍流模型的浮空器强迫对流换热[J]. 化工学报, 2020, 71(S1): 136-141.
[12] 刘佳鑫, 徐宇, 花儿. 异辛基乙二胺-酰基丙氨酸型质子化离子液体的分子间氢键相互作用[J]. 化工学报, 2020, 71(S1): 15-22.
[13] 王晨, 折晓会, 张小松. 含空气净化过程的液态空气储能热力学研究[J]. 化工学报, 2020, 71(S1): 23-30.
[14] 阿嵘, 庞丽萍, 杨东升, 齐玢. 高速飞行器机载综合热管理系统设计与优化[J]. 化工学报, 2020, 71(S1): 315-321.
[15] 孟繁鑫, 孙佳宁, 周月, 高赞军, 程定斌. 飞机环控系统空气循环机仿真建模及试验校核[J]. 化工学报, 2020, 71(S1): 328-334.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 彭正标, 袁竹林, 梁坤峰, 蔡杰. Ice Slurry Formation in a Cocurrent Liquid-Liquid Flow[J]. CIESC Journal, 2008, 16(4): 552 -557 .
[2] 童少平, 张铁明, 马淳安. Oxygen Evolution Behavior of PTFE-F-PbO2 Electrode in H2SO4 Solution[J]. CIESC Journal, 2008, 16(6): 885 -889 .
[3] 魏晓琨, 丁庆豹, 欧伶, 张鹭, 王昌禄. Two-step Enzymatic Synthesis of Guanine Arabinoside[J]. CIESC Journal, 2008, 16(6): 934 -937 .
[4] 王学猛, 蒋登高, 耿再新. Isobaric Vapor-Liquid Equilibrium of Binary System 2-Cyclohexen-1-one and 1, 2-Epoxycyclohexane[J]. CIESC Journal, 2009, 17(1): 136 -139 .
[5] 李丽娟, 苏宏业, 褚建. Modeling of Isomerization of C8 Aromatics by Online Least Squares Support Vector Machine[J]. CIESC Journal, 2009, 17(3): 437 -444 .
[6] 蔡卫权, 李会泉, 张光旭. Enhancement on Synthesis of Boehmite Through a Precarbonization-assisted Hydrogen Peroxide Route in Highly Alkaline Sodium Aluminate Solutions[J]. CIESC Journal, 2010, 18(3): 500 -505 .
[7] 唐课文, 苗家兵, 周涛, 刘永兵. Equilibrium Studies on Liquid-Liquid Reactive Extraction of Phenylsuccinic Acid Enantiomers Using Hydrophilic β-CD Derivatives Extractants[J]. Chinese Journal of Chemical Engineering, 2011, 19(3): 397 -403 .
[8] 刘少友, 陆建平, 冯庆革, 唐文华. Effect of Ethanol on Synthesis and Electrochemical Property of Mesoporous Al-doped Titanium Dioxide via Solid-state Reaction [J]. CIESC Journal, 2011, 19(4): 674 -681 .
[9] 孙晓英, 赵雪冰, 杜伟, 刘德华. Kinetics of Formic Acid-autocatalyzed Preparation of Performic Acid in Aqueous Phase[J]. CIESC Journal, 2011, 19(6): 964 -971 .
[10] 陈晓春,饶国瑛,李成岳. 合成甲醇基元过程瞬态动力学的模型化(Ⅱ)——合成甲醇瞬态动力学 [J]. CIESC Journal, 1999, 50(2): 152 -158 .