化工学报 ›› 2020, Vol. 71 ›› Issue (6): 2530-2546.doi: 10.11949/0438-1157.20200338

• 综述与专论 • 上一篇    下一篇

锂离子电容器碳正极材料的研究进展

胡涛1,2(),张熊1,2(),安亚斌1,李晨1,马衍伟1,2   

  1. 1.中国科学院电工研究所,北京 100190
    2.中国科学院大学,北京 100049
  • 收稿日期:2020-03-30 修回日期:2020-04-13 出版日期:2020-06-05 发布日期:2020-04-17
  • 通讯作者: 张熊 E-mail:hutao@mail.iee.ac.cn;zhangxiong@mail.iee.ac.cn
  • 作者简介:胡涛(1996—),男,博士研究生,hutao@mail.iee.ac.cn
  • 基金资助:
    国家自然科学基金项目(51677182)

Research progress of carbon cathode materials for Li-ion capacitors

Tao HU1,2(),Xiong ZHANG1,2(),Yabin AN1,Chen LI1,Yanwei MA1,2   

  1. 1.Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2020-03-30 Revised:2020-04-13 Online:2020-06-05 Published:2020-04-17
  • Contact: Xiong ZHANG E-mail:hutao@mail.iee.ac.cn;zhangxiong@mail.iee.ac.cn

摘要:

锂离子电容器是一种采用电容型正极材料、电池型负极材料进行组装的储能器件,结合了锂离子电池与超级电容器两者的优点,兼具高能量密度、高功率密度和长循环寿命。但是由于锂离子电容器还存在正负极动力学过程以及容量不匹配的问题,大大影响了锂离子电容器的电化学性能。通常锂离子电容器的功率密度取决于负极材料,而能量密度取决于正极材料,因此为提高锂离子电容器的能量密度,还需发展具有高比容量和高导电性的正极材料。目前,碳材料因具有低成本、来源广泛、高比表面积和丰富的孔道结构等特点,是一种极具应用潜力的电极材料。综述并分析了各种碳材料(包括活性炭、模板炭、石墨烯和生物炭等)作为锂离子电容器正极材料的电化学性能与优缺点,最后对锂离子电容器正极材料的研究提出了建议与展望。

关键词: 锂离子电容器, 正极材料, 活性炭, 复合材料, 活化, 电化学性能

Abstract:

Lithium ion capacitor is a kind of energy storage device assembled with capacitive positive electrode material and battery negative electrode material. It combines the advantages of both lithium ion battery and super capacitor, and has high energy density, high power density and long cycle life. However, due to the unbalanced capacity and kinetic imbalance between the anode and cathode, the electrochemical performance of lithium-ion capacitors is greatly limited. Generally, the power density of lithium-ion capacitors depends on the negative electrode material, while the energy density depends on the positive electrode material. Therefore, to improve the energy density of lithium-ion capacitors, it is necessary to develop the positive electrode material with high specific capacity and high conductivity. At present, carbon material is a potential electrode material because of its low cost, wide source, high specific surface area and rich pore structure. In this paper, the electrochemical properties, advantages and disadvantages of various carbon materials (including activated carbon, template carbon, graphene and biochar, etc.) as cathode materials for lithium-ion capacitors are reviewed and analyzed. Finally, suggestions and prospects for the research of cathode materials for lithium-ion capacitors are put forward.

Key words: lithium-ion capacitors, cathode materials, activated carbon, composites, activation, electrochemistry performance

中图分类号: 

  • TM 911
1 Suberu M Y, Mustafa M W, Bashir N. Energy storage systems for renewable energy power sector integration and mitigation of intermittency[J]. Renewable and Sustainable Energy Reviews, 2014, 35: 499-514.
2 Kang J N, Wei Y M, Liu L C, et al. Energy systems for climate change mitigation: a systematic review[J]. Applied Energy, 2020, 263: 114602.
3 Lian J J, Zhang Y S, Ma C, et al. A review on recent sizing methodologies of hybrid renewable energy systems[J]. Energy Conversion and Management, 2019, 199: 112027.
4 Nazir M S, Ali N, Bilal M, et al. Potential environmental impacts of wind energy development: a global perspective[J]. Current Opinion in Environmental Science & Health, 2020, 13: 85-90.
5 Zhang Y H, Ren J, Pu Y R, et al. Solar energy potential assessment: a framework to integrate geographic, technological, and economic indices for a potential analysis[J]. Renewable Energy, 2020, 149: 577-586.
6 Mejia C, Kajikawa Y Y. Emerging topics in energy storage based on a large-scale analysis of academic articles and patents[J]. Applied Energy, 2020, 263: 114625.
7 宋维力, 范丽珍. 超级电容器研究进展: 从电极材料到储能器件[J]. 储能科学与技术, 2016, 5(6): 788-799.
Song W L, Fan L Z. Advances in supercapacitors: from electrodes materials to energy storage devices[J]. Energy Storage Science and Technology, 2016, 5(6): 788-799.
8 孙现众, 张熊, 王凯, 等. 高能量密度的锂离子混合型电容器[J]. 电化学, 2017, 23: 586-603.
Sun X Z, Zhang X, Wang K, et al. Lithium ion hybrid capacitor with high energy density[J]. Journal of Electrochemistry, 2017, 23: 586-603.
9 李章溢, 房凯, 刘强, 等. 储能技术在电力调峰领域中的应用[J]. 电器与能效管理技术, 2019, 10: 69-73.
Li Z Y, Fang K, Liu Q, et al. Application of energy storage technology in power peak regulation[J]. Electrical & Energy Management Technology, 2019, 10: 69-73.
10 姚煜, 张楙慧. 高倍率锂离子电池材料研究进展[J]. 电源技术, 2019, 43(3): 511-514.
Yao Y, Zhang M H. Research progress of materials for high power Li-ion batteries[J]. Chinese Journal of Power Sources, 2019, 43(3): 511-514.
11 Zhao B Z, Ran R, Liu M L, et al. A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: the latest advancements and future perspectives[J]. Materials Science and Engineering: R: Reports, 2015, 98: 1-71.
12 Wang Y X, Liu B, Li Q Y, et al. Lithium and lithium ion batteries for applications in microelectronic devices: a review[J]. Journal of Power Sources, 2015, 286: 330-345.
13 Liu B H, Jia Y K, Yuan C H, et al. Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: a review[J]. Energy Storage Materials, 2020, 24: 85-112.
14 Liu Q, Du C, Shen B, et al. Understanding undesirable anode lithium plating issues in lithium-ion batteries[J]. RSC Advances, 2016, 6: 88683-88700.
15 肖谧, 宿玉鹏, 杜伯学. 超级电容器研究进展[J]. 电子元件与材料, 2019, 38(9): 1-12.
Xiao M, Su Y P, Du B X. Research progress of supercapacitors[J]. Electronic Components and Materials, 2019, 38(9): 1-12.
16 黄晓斌, 张熊, 韦统振, 等. 超级电容器的发展及应用现状[J]. 电工电能新技术, 2017, 36(11): 63-70.
Huang X B, Zhang X, Wei T Z, et al. Development and application of super capacitor[J]. Advanced Technology of Electrical Engineering and Energy, 2017, 36(11): 63-70.
17 Afif A, Rahaman S M, Azad A T, et al. Advanced materials and technologies for hybrid supercapacitors for energy storage—a review[J]. Journal of Energy Storage, 2019, 25: 100852.
18 Siwatch P, Sharma K, Arora A, et al. Review of supercapacitors: materials and devices[J]. Journal of Energy Storage, 2019, 21: 801-825.
19 Smith P H, Tran T N, Jiang T L, et al. Lithium-ion capacitors: electrochemical performance and thermal behavior[J]. Journal of Power Sources, 2013, 243: 982-992.
20 叶成玉, 颜冬, 陆安慧, 等. 有机介质体系锂离子电容器[J]. 化工进展, 2019, 38(3): 1283-1296.
Ye C Y, Yan D, Lu A H, et al. Lithium ion capacitors with organic electrolyte[J]. Chemical Industry and Engineering Progress, 2019, 38(3): 1283-1296.
21 巩瑞奇, 金黎明, 郑俊生, 等. 锂离子电容器: 理论、结构设计与应用[J]. 电子元件与材料, 2018, 37(10): 8-12.
Gong R Q, Jin L M, Zheng J S, et al. Lithium ion capacitor: theory, structure and applications[J]. Electronic Components and Materials, 2018, 37(10): 8-12.
22 Zhang X, Wang L, Liu W J, et al. Recent advances in MXenes for lithium-ion capacitors[J]. ACS Omega, 2020, 5: 75-82.
23 Amatucci G G, Badway F, Pasquier A, et al. An asymmetric hybrid nonaqueous energy storage cell[J]. Journal of the Electrochemical Society, 2001, 148: 930-939.
24 Yu X L, Deng J J, Zhan C Z, et al. A high-power lithium-ion hybrid electrochemical capacitor based on citrate-derived electrodes[J]. Electrochimica Acta, 2017, 228: 76-81.
25 Seman R N A R, Azam M A, Mohamad A A. Systematic gap analysis of carbon nanotube-based lithium-ion batteries and electrochemical capacitors[J]. Renewable and Sustainable Energy Reviews, 2017, 75: 644-659.
26 Pasquier A D, Plitz I, Gural J, et al. Characteristics and performance of 500 F asymmetric hybrid advanced supercapacitor prototypes[J]. Journal of Power Sources, 2003, 113: 62-71.
27 Luo J Y, Liu J L, He P, et al. A novel LiTi2(PO4)3/MnO2 hybrid supercapacitor in lithium sulfate aqueous electrolyte[J]. Electrochimica Acta, 2008, 53(28): 8128-8133.
28 Akio H. Development and applications of lithium ion capacitors[J]. Carbon, 2013, 57: 539.
29 Xu X N, Niu F E, Zhang D P, et al. Hierarchically porous Li3VO4/C nanocomposite as an advanced anode material for high-performance lithium-ion capacitors[J]. Journal of Power Sources, 2018, 384: 240-248.
30 李新. 钛酸锂基锂离子电容器电极材料的制备与性能优化[D]. 沈阳: 沈阳师范大学, 2019.
Li X. Preparation and property optimization of electrode materials for lithium titanite-based lithium ion capacitors[D]. Shenyang: Shenyang Normal University, 2019.
31 Han C P, Xu L, Li H F, et al. Biopolymer-assisted synthesis of 3D interconnected Fe3O4@carbon core@shell as anode for asymmetric lithium ion capacitors[J]. Carbon, 2018, 140: 296-305.
32 Li C, Zhang X, Wang K, et al. High-power and long-life lithium-ion capacitors constructed from N-doped hierarchical carbon nanolayer cathode and mesoporous graphene anode[J]. Carbon, 2018, 140: 237-248.
33 Li N W, Du X, Shi J L, et al. Graphene@hierarchical meso-/microporous carbon for ultrahigh energy density lithium-ion capacitors[J]. Electrochimica Acta, 2018, 281: 459-465.
34 Ma H, Geng H, Yao B, et al. Highly ordered graphene solid: an efficient platform for capacitive sodium-ion storage with ultrahigh volumetric capacity and superior rate capability[J]. ACS Nano, 2019, 13: 9161-9170.
35 Li C, Zhang X, Wang K, et al. High-power lithium-ion hybrid supercapacitor enabled by holey carbon nanolayers with targeted porosity[J]. Journal of Power Sources, 2018, 400: 468-477.
36 Li G, Yang Z, Yin H, et al. Non-aqueous dual-carbon lithium-ion capacitors: a review[J]. Journal of Materials Chemistry A, 2019, 7: 15541-15563.
37 Zhang S J, Li C, Zhang X, et al. High-performance lithium-ion hybrid capacitors employing Fe3O4-graphene composite anode and activated carbon cathode[J]. ACS Applied Materials & Interfaces, 2017, 9: 17136-17144.
38 刘丽莹. 有机系高比能量超级电容器的研究[D]. 长春: 吉林大学, 2019.
Liu L Y. The study of supercapacitor with high specific energy in organic system[D]. Changchun: Jilin University, 2019.
39 Eguchi T, Tashima D, Fukuma M, et al. Activated carbon derived from Japanese distilled liquor waste: application as the electrode active material of electric double-layer capacitors[J]. Journal of Cleaner Production, 2020, 259: 120822.
40 Sivakkumar S R, Pandolfo A G. Evaluation of lithium-ion capacitors assembled with pre-lithiated graphite anode and activated carbon cathode[J]. Electrochimica Acta, 2012, 65: 280-287.
41 Zhang J, Liu X F, Wang J, et al. Different types of pre-lithiated hard carbon as negative electrode material for lithium-ion capacitors[J]. Electrochimica Acta, 2016, 187: 134-142.
42 Gómez-Cámer J L, Arnaiz M, Rojo T, et al. Novel lithium-ion capacitor based on tin phosphide and olive pit derived activated carbon[J]. Journal of Power Sources, 2019, 434: 226695.
43 Zhou J, Lian J, Hou L, et al. Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres[J]. Nature Communications, 2015, 6: 8503.
44 Li W, Chen D, Li Z, et al. Nitrogen enriched mesoporous carbon spheres obtained by a facile method and its application for electrochemical capacitor[J]. Electrochemistry Communications, 2007, 9: 569-573.
45 Liu C H, Koyyalamudi B B, Li L, et al. Improved capacitive energy storage via surface functionalization of activated carbon as cathodes for lithium ion capacitors[J]. Carbon, 2016, 109: 163-172.
46 Zhou X Y, Geng Z, Li B, et al. Oxygen doped activated carbon/SnO2 nanohybrid for high performance lithium-ion capacitor[J]. Journal of Electroanalytical Chemistry, 2019, 850: 113398.
47 Ma Y, Chang H, Zhang M, et al. Graphene-based materials for lithium-ion hybrid supercapacitors[J]. Advanced Materials, 2015, 27: 5296-5308.
48 Tie D, Huang S, Wang J, et al. Hybrid energy storage devices: advanced electrode materials and matching principles[J]. Energy Storage Materials, 2019, 21: 22-40.
49 曲文慧. 高比能量锂离子电容器的构筑及其电化学性能研究[D]. 大连: 大连理工大学, 2016.
Qu W H. Construction of lithium ion capacitor with high specific energy density and its electrochemical performance[D]. Dalian: Dalian University of Technology, 2016.
50 张进. 高比能锂离子电容器的设计与电化学性能研究[D]. 天津: 天津工业大学, 2016.
Zhang J. Design and electrochemical performance of high specific energy lithium-ion capacitors[D]. Tianjin: Tiangong University, 2016.
51 Aref A R, Chen S W, Rajagopalan R, et al. Bimodal porous carbon cathode and prelithiated coalesced carbon onion anode for ultrahigh power energy efficient lithium ion capacitors[J]. Carbon, 2019, 152: 89-97.
52 Berhaut C L, Lemordant, Porion P, et al. Ionic association analysis of LiTDI, LiFSI and LiPF6 in EC/DMC for better Li-ion battery performances[J]. RSC Advances, 2019, 9(8): 4599-4608.
53 Largeot C, Portet C, Chmiola J, et al. Relation between the ion size and pore size for an electric double-layer capacitor[J]. Journal of the American Chemical Society, 2008, 130(9): 2730-2731.
54 Thiruppathi A R, Sidhureddy B, Salyerda M, et al. Novel three-dimensional N-doped interconnected reduced graphene oxide with superb capacitance for energy storage[J]. Journal of Electroanalytical Chemistry, 2020, DOI: 10.1016/j.jelechem.2020.113911.
doi: 10.1016/j.jelechem.2020.113911
55 Zhao X R, Zhang X, Li C, et al. High-performance lithium-ion capacitors based on CoO-graphene composite anode and holey carbon nanolayer cathode[J]. ACS Sustainable Chemistry & Engineering, 2019, 7: 11275-11283.
56 Korkmaz S, Kariper İ A. Graphene and graphene oxide based aerogels: synthesis, characteristics and supercapacitor applications[J]. Journal of Energy Storage, 2020, 27: 101038.
57 方陵生在. 神奇材料石墨烯——2010年度诺贝尔物理学奖得主安德烈·盖姆访谈录[J]. 世界科学, 2010, 11: 11-12.
Fang L S Z. Amazing material graphene: interview with Andre Geim, 2010 Nobel Prize winner in Physics[J]. World Science, 2010, 11: 11-12.
58 Rao C N, Sood A K, Subrahmanyam K S, et al. Graphene: the new two-dimensional nanomaterial[J]. Angewandte Chemie International Edition, 2009, 48: 7752-7777.
59 Li C, Zhang X, Sun C K, et al. Recent progress of graphene-based materials in lithium-ion capacitors[J]. Journal of Physics D: Applied Physics, 2019, 52: 143001.
60 Ji W W, Liu Y J, Shan Z Q, et al. Boron doped graphene cathode for capacitor via a new one-step method[J]. Ceramics International, 2019, 45(6): 7095-7101.
61 顾晓瑜, 洪晔, 艾果, 等. 高比能高功率全石墨烯锂离子电容器[J]. 化学学报, 2018, 76(8): 644-648.
Gu X Y, Hong Y, Ai G, et al. All graphene lithium ion capacitor with high-energy-power density performance[J]. Acta Chimica Sinica, 2018, 76(8): 644-648.
62 Jin L M, Guo X, Gong R Q, et al. Target-oriented electrode constructions toward ultra-fast and ultra-stable all-graphene lithium ion capacitors[J]. Energy Storage Materials, 2019, 23: 409-417.
63 Stoller M D, Murali S, Quarles N, et al. Activated graphene as a cathode material for Li-ion hybrid supercapacitors[J]. Physical Chemistry Chemical Physics, 2012, 14: 3388-3391.
64 Ajuria J, Arnaiz M, Botas C, et al. Graphene-based lithium ion capacitor with high gravimetric energy and power densities[J]. Journal of Power Sources, 2017, 363: 422-427.
65 Dsoke S, Fuchs B, Gucciardi E, et al. The importance of the electrode mass ratio in a Li-ion capacitor based on activated carbon and Li4Ti5O12[J]. Journal of Power Sources, 2015, 282: 385-393.
66 Raccichini R, Varzi A, Wei D, et al. Critical insight into the relentless progression toward graphene and graphene-containing materials for lithium-ion battery anodes[J]. Advanced Materials, 2017, 29: 1-33.
67 Zong J, Ni W, Xu H, et al. High tap-density graphene cathode material for lithium-ion capacitors via a mass-scalable synthesis method[J]. Chemical Engineering Journal, 2019, 360: 1233-1240.
68 Jeong J H, Lee G W, Kim Y H, et al. A holey graphene-based hybrid supercapacitor[J]. Chemical Engineering Journal, 2019, 378: 122126.
69 Li N W, Du X Y, Shi J L, et al. Graphene@hierarchical meso-/microporous carbon for ultrahigh energy density lithium-ion capacitors[J]. Electrochimica Acta, 2018, 281: 459-465.
70 Li X, Tang Y, Song J H, et al. Self-supporting activated carbon/carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor[J]. Carbon, 2018, 129: 236-244.
71 Li X, Tang Y, Song J H, et al. Self-supporting lithium titanate nanorod/carbon nanotube/reduced graphene oxide flexible electrode for high performance hybrid lithium-ion capacitor[J]. Journal of Alloys and Compounds, 2019, 790: 1157-1166.
72 Li B, Dai F, Xiao Q, et al. Activated carbon from biomass transfer for high‐energy density lithium‐ion supercapacitors[J]. Advanced Energy Materials, 2016, 6: 1600802.
73 Natarajan S, Lee Y, Aravindan V. Biomass-derived carbon materials as prospective electrodes for high-energy lithium- and sodium-ion capacitors[J]. Chemistry—an Asian Journal, 2019, 14: 936-951.
74 Kumar A, Joseph S, Tsechansky L, et al. Biochar aging in contaminated soil promotes Zn immobilization due to changes in biochar surface structural and chemical properties[J]. Science of the Total Environment, 2018, 626: 953-961.
75 Ania C O, Khomenko V, Raymund-Piñero E, et al. The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template[J]. Angewandte Chemie-International Edition, 2007, 17: 1828-1836.
76 Wu J, Zhang D, Wang Y, et al. Electrocatalytic activity of nitrogen-doped graphene synthesized via a one-pot hydrothermal process towards oxygen reduction reaction[J]. Journal of Power Sources, 2013, 227: 185-190.
77 Lu Q, Lu B, Chen M F, et al. Porous activated carbon derived from Chinese-chive for high energy hybrid lithium-ion capacitor[J]. Journal of Power Sources, 2018, 398: 128-136.
78 Lu B, Ma B, Yu R, et al. Photovoltaic monocrystalline silicon waste‐derived hierarchical silicon/flake graphite/carbon composite as low-cost and high-capacity anode for lithium-ion batteries[J]. Chemistry Select, 2017, 2: 3479.
79 Wang P, Zhang G, Li M Y, et al. Porous carbon for high-energy density symmetrical supercapacitor and lithium-ion hybrid electrochemical capacitors[J]. Chemical Engineering Journal, 2019, 375: 122020.
80 Wang P, Ye H, Yin Y X, et al. Fungi-enabled synthesis of ultrahigh-surface-area porous carbon[J]. Advanced Materials, 2018, 31: 1805134.
81 Zhu G Y, Ma L, Lv H, et al. Pine needle-derived microporous nitrogen-doped carbon frameworks exhibit high performances in electrocatalytic hydrogen evolution reaction and supercapacitors[J]. Nanoscale, 2017, 9: 1237-1243.
82 Zhu G Y, Chen T, Wang L, et al. High energy density hybrid lithium-ion capacitor enabled by Co3ZnC@N-doped carbon nanopolyhedra anode and microporous carbon cathode[J]. Energy Storage Materials, 2018, 14: 246-252.
83 Yang Z W, Guo H J, Li X H, et al. Natural sisal fibers derived hierarchical porous activated carbon as capacitive material in lithium ion capacitor[J]. Journal of Power Sources, 2016, 329: 339-346.
84 Kumagai S, Abe Y, Saito T, et al. Lithium-ion capacitor using rice husk-derived cathode and anode active materials adapted to uncontrolled full-pre-lithiation[J]. Journal of Power Sources, 2019, 437: 226924.
85 Babu B, Lashmi P G, Shaijumon M M. Li-ion capacitor based on activated rice husk derived porous carbon with improved electrochemical performance[J]. Electrochimica Acta, 2016, 211: 289-296.
86 Jain A, Jayaraman S, Ulaganathan M, et al. Highly mesoporous carbon from Teak wood sawdust as prospective electrode for the construction of high energy Li-ion capacitors[J]. Electrochimica Acta, 2017, 228: 131-138.
87 Gokhale R, Aravindan V, Yadav P, et al. Oligomer-salt derived 3D, heavily nitrogen doped, porous carbon for Li-ion hybrid electrochemical capacitors application[J]. Carbon, 2014, 80: 462-471.
88 Li B, Dai F, Xiao Q, et al. Activated carbon from biomass transfer for high‐energy density lithium‐ion supercapacitors[J]. Advanced Energy Materials, 2016, 6: 1600802.
89 Zhao X, Johnston C, Grant P S. A novel hybrid supercapacitor with a carbon nanotube cathode and an iron oxide/carbon nanotube composite anode[J]. Journal of Materials Chemistry, 2009, 19: 8755-8760.
[1] 黄睿,方晓明,凌子夜,张正国. 高性能三水醋酸钠-尿素-膨胀石墨混合相变材料的制备及其在电地暖中的应用性能[J]. 化工学报, 2020, 71(6): 2713-2723.
[2] 毕宏晖,焦帅,魏风,何孝军. 珊瑚状氮掺杂多孔碳的制备及其超电容性能[J]. 化工学报, 2020, 71(6): 2880-2888.
[3] 王赫,秦楠,郭鑫,郑俊生,赵基钢. 锂离子电容器硬碳负极材料的表面改性及其电化学性能研究[J]. 化工学报, 2020, 71(6): 2735-2742.
[4] 李靓晗,简现龙,张森,张明,孙玉平,王新昌. 柔性、自支撑CNT/Si复合薄膜的制备及储能性能[J]. 化工学报, 2020, 71(6): 2804-2810.
[5] 林羲栋,唐友臣,苏权飞,刘绍鸿,吴丁财. 层次孔碳材料:结构设计、功能改性及新能源器件应用[J]. 化工学报, 2020, 71(6): 2586-2598.
[6] 邹雷,刘国强,江苗苗,杨则恒,张卫新. ZIF-67衍生Co/NC多孔碳材料的改性及其电催化水氧化性能[J]. 化工学报, 2020, 71(6): 2821-2829.
[7] 徐晓倩,程俊霞,朱亚明,高丽娟,赖仕全,赵雪飞. 针状焦基电容器碳质电极材料的制备及电化学性能研究[J]. 化工学报, 2020, 71(6): 2830-2839.
[8] 梁秋群, 刘峥, 艾慧婷, 刘欣欣, 张淑芬. 基于油茶果壳的C/ZnO复合材料制备及其在铅碳电池中的应用[J]. 化工学报, 2020, 71(5): 2292-2304.
[9] 王燕霞, 胡修德, 郝健, 郭庆杰. TEPA负载复合氧化活性炭吸附烟气中的CO2性能[J]. 化工学报, 2020, 71(5): 2333-2343.
[10] 于泽沛, 冯妍卉, 冯黛丽, 张欣欣. 三维石墨烯-碳纳米管复合结构热导率的分子动力学模拟[J]. 化工学报, 2020, 71(4): 1822-1827.
[11] 白志蕊, 徐洪涛, 屈治国, 张剑飞, 苗玉波. 相变套管式储热系统放冷性能实验研究[J]. 化工学报, 2020, 71(4): 1580-1587.
[12] 郭华超, 杨波, 黄国家, 徐青永, 李爽, 伍振凌. 聚偏氟乙烯/石墨烯复合材料的制备及性能研究[J]. 化工学报, 2020, 71(4): 1881-1888.
[13] 刘小艳, 蔡万欣, 赵立坤, 曾香, 毛旭辉. 活性炭去除游离氯的失效机制及热再生研究[J]. 化工学报, 2020, 71(4): 1781-1790.
[14] 杨鑫宇, 吴杰, 张建庭, 吴纯鑫, 赵德明. 功能化磁性纳米复合材料Fe3O4-mPD/SP吸附Cr(Ⅵ)研究[J]. 化工学报, 2020, 71(3): 1060-1071.
[15] 王柯晴, 徐劼, 沈芷璇, 陈家斌, 吴玮. LaCoO3钙钛矿活化过一硫酸盐降解萘普生[J]. 化工学报, 2020, 71(3): 1326-1334.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 徐泽辉, 夏蓉晖, 郭世卓, 范存良, 房鼎业. Improvement of Isomerization Process of Crude Isoamylene with Tertiary-amyl-alcohol Addition[J]. CIESC Journal, 2009, 17(5): 761 -766 .
[2] 王梦蛟,葛雄章,裘建民. 炭黑表面粗糙度对橡胶补强作用的影响 [J]. CIESC Journal, 1980, 31(4): 387 -393 .
[3] 莫之光. 鼓泡塔反应器的多级回流模型 [J]. CIESC Journal, 1983, 34(2): 147 -155 .
[4] 潘旭海;徐进;蒋军成.

圆柱形薄壁储罐对爆炸冲击波动力学响应的模拟分析

[J]. CIESC Journal, 2008, 59(3): 796 -801 .
[5] 王绍亭,陈涛,张凤宝,顾汉卿. “患者”——伴有超滤的透析型人工肾系统双室模型的研究 [J]. CIESC Journal, 1988, 39(5): 545 -552 .
[6] 巢守柏,范正. 振动筛板槽中液滴分散动力学的研究——(Ⅱ)实验结果及Monte-Carlo模拟技术的应用 [J]. CIESC Journal, 1988, 39(6): 651 -658 .
[7] 胥聪敏. 陕北盐渍土壤对X80管线钢电化学腐蚀行为的影响 [J]. CIESC Journal, 2011, 62(3): 773 -778 .
[8] 阳永荣; 曹彬. 二氯乙烷裂解管式反应器二维模拟 [J]. CIESC Journal, 2002, 53(10): 1046 -1050 .
[9] 阮复昌,李向明,莫炳禄,公国庆,邓颂九. 高分子半透膜中的荧光猝灭动力学 [J]. CIESC Journal, 1996, 47(3): 299 -304 .
[10] 刘军利, 唐惠庆, 郭占成. 氢气氛下半焦有机硫的脱除动力学 [J]. 化工学报, 2004, 55(8): 1335 -1340 .