化工学报

• • 上一篇    下一篇

磁补偿微重力环境实现及磁流体微重力内角流动研究

沈逸1, 张泽宇1, 梁益涛1, 黄永华1, 耑锐2, 张亮2, 卜劭华2   

  1. 1. 上海交通大学制冷与低温工程研究所, 上海 200240;
    2. 上海宇航系统工程研究所, 上海 201108
  • 收稿日期:2020-03-20 修回日期:2020-05-20 出版日期:2023-04-17 发布日期:2020-05-25
  • 通讯作者: 黄永华(1978-),男,博士,研究员,huangyh@sjtu.edu.cn E-mail:huangyh@sjtu.edu.cn
  • 作者简介:沈逸(1999-),男,,硕士研究生,sy990216@sjtu.edu.cn
  • 基金资助:
    上海航天先进技术联合研究基金项目(USCAST2019-4);航天低温推进剂技术国家重点实验室开放课题(SKLTSCP);国家自然科学基金项目(51676118)

Realization of microgravity environment by magnetic compensation and study on interior corner flow of magnetic fluid in microgravity

SHEN Yi1, ZHANG Zeyu1, LIANG Yitao1, HUANG Yonghua1, ZHUAN Rui2, ZHANG Liang2, BU Shaohua2   

  1. 1. Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China;
    2. Shanghai Aerospace System Engineering Institute, Shanghai 201108, China
  • Received:2020-03-20 Revised:2020-05-20 Online:2023-04-17 Published:2020-05-25

摘要: 由于表面张力的作用,流体在微重力环境中沿一定夹角的内角壁面爬升过程与常重力状态不同。为了对微重力内角流动的物理过程进行研究,本文利用磁补偿方法搭建了常温磁流体微重力补偿实验台,实现了目标区域内纵向小于5%非均匀度的磁补偿微重力环境。并对不同重力条件下水基磁流体沿若干材料内角爬升过程进行了可视化实验研究,探究了微重力环境下流体与材料间的接触角以及内角角度对液体导流性能的影响以及毛细流动规律。结果表明,在满足Concus-Finn条件时,液面爬升高度和重力加速度近似成反比关系。接触角和内角角度越小,流体输运能力越强,且重力水平越低,越为明显。当不满足Concus-Finn条件时,液面爬升高度和重力加速度近似成线性关系,接触角和内角角度对流体输运能力的影响并不明显。

关键词: 微重力, 毛细流动, 磁补偿, 水基磁流体, 接触角, 内角

Abstract: Due to the effect of surface tension, the fluid climbing process along the wall of a certain interior corner angle in the microgravity environment is theoretically different from the normal gravity state. In order to study the physical process of capillary flow in microgravity, this paper uses the magnetic compensation method to set up a normal temperature magnetic fluid microgravity compensation experimental platform, which achieves magnetic compensation of less than 5% non-uniformity longitudinally in the target area. Visualized experimental research on the climb process of water-based magnetic fluid along the interior corner of different materials under the condition of different gravity is performed to verify the influence of contact angle and interior corner angle on the fluid transport capacity in the microgravity environment and to reveal the capillary flow law of the magnetic fluid in the microgravity environment. The results show that under the condition that the Concus-Finn condition is satisfied, the liquid surface climbing height and the gravity acceleration are approximately inversely proportional. The smaller the contact angle and interior corner angle, the stronger the fluid transport capacity of the material, especially in a good microgravity environment. When the Concus-Finn condition is not met, the liquid surface climbing height and the acceleration of gravity have a linear relationship, and the impact of changes in contact angle and interior corner angle on the fluid transport capacity is not obvious.

Key words: Microgravity, Capillary Flow, Magnetic Compensation, Water-based Magnetic Fluid, Contact Angle, Interior Corner

中图分类号: 

  • V511+.6
[1] 王磊,厉彦忠,马原,等. 液体推进剂在轨加注技术与加注方案[J]. 航空动力学报, 2016, 31(8):2002-2009. Wang L, Li Y Z, Ma Y, et al. On-orbit refilling technologies and schemes of liquid propellant[J]. Journal of Aerospace Power, 2016, 31(8):2002-2009.
[2] Chato D J. Cryogenic technology development for explorations missions[R]. AIAA 2007-0953, NASA/TM-2007-214824, 2007.
[3] Doherty M, Joseph G, Salerno L, et al. Cryogenic fluid management technology for moon and mars missions[R]. NASA/TM-2010-216070, AIAA 2009-6532, 2009.
[4] 张天平. 空间低温流体贮存的压力控制技术进展[J]. 真空与低温, 2006, 12(3):125-131, 141. Zhang T P. The progress of pressure control technology of cryogenic liquid storage in space[J]. Vacuum & Cryogen, 2006, 12(3):125-131, 141.
[5] Tegart J R, Driscoll S L, Hastings L J. Fluid acquisition and resupply experiments on space shuttle flights STS-53 and STS-57[R]. Alabama, USA:Marshall Space Flight Center, NASA/TP-2011-216465, April 2011.
[6] Concus P, Finn R. On the behavior of a capillary surface in a wedge[J]. Proceedings of the National Academy of Sciences, 1969, 63(2):292-299.
[7] Nardin C L, Weislogel M M. Capillary driven flows along differentially wetted interior corners[R]. NASA TM-213799, 2005.
[8] Weislogel M M, Sech L. Capillary flow in an interior corner[J]. Journal of Fluid Mechanics, 1998, 373:349-378.
[9] Weislogel M M. Capillary flow in cylindrical containers of irregular polygonal section[R]. AIAA 2001-0765, 2000.
[10] Weislogel M M. Capillary flow in containers of polygonal section:theory and experiment[R]. NASA/CR-2001-210900, 2001.
[11] Weislogel M M. Some analytical tools for fluids management in space:isothermal capillary flows along interior corners[J]. Advances in Space Research, 2003, 32(2):163-170.
[12] Geoffrey M, Norman R M. Capillary behavior of a perfectly wetting liquid in irregular triangular tubes[J]. Journal of Colloid and Interface Science, 1991, 141(1):262-274.
[13] Dong M, Chatzis I. The imbibition and flow of a wetting liquid along the corners of a square capillary tube[J]. Journal of Colloid and Interface Science, 1995, 172(2):278-288.
[14] 魏月兴,陈小前,黄奕勇.内角流动及其在卫星贮箱设计中的应用[J]. 中国科学:技术科学, 2011, 41(9):1218-1224. Wei Y X, Chen X Q, Huang Y Y. Interior corner flow theory and its application to the satellite propellant management device design[J]. Scientia Sinica Techologica, 2011, 41(9):1218-1224.
[15] 李京浩,陈小前,黄奕勇.基于内角流动的板式表面张力贮箱内推进剂流动过程研究[J]. 国防科技大学学报, 2012, 34(4):18-21. Li J H, Chen X Q, Huang Y Y.A study of propellant flow in the vane-type surface tension tank based on interior corner flow[J]. Journal of National University of Defense Technology, 2012, 34(4):18-21.
[16] 周宏伟,王林伟,徐升华,等.微重力条件下与容器连通的毛细管中的毛细流动研究[J]. 物理学报, 2015, 64(12):124703 Zhou H W, Wang L W, Xu S H, et al. Capillary-driven flow in tubes connected to the containers under microgravity condition[J]. Acta Physica Sinica, 2015, 64(12):124703.
[17] 徐升华,周宏伟,王彩霞,等. 微重力条件下不同截面形状管中毛细流动的实验研究[J]. 物理学报, 2013, 62(13):134702. Xu S H, Zhou H W, Wang C X, et al. Experimental study on the capillary flow in tubes of different shapes under microgravity condition[J]. Acta Physica Sinica, 2013, 62(13):134702.
[18] Wang C X, Xu S H, Sun Z W, et al. A study of the influence of initial liquid volume on the capillary in interior corner under microgravity[J]. International Journal of Heat and Mass Transfer, 2010, 53(9-10):1801-1807.
[19] Xu S H, Wang C X, Sun Z W, et al. The capillary flow and reorientation of liquid-gas surface in interior corner under microgravity[J]. Journal of the Japan Society of Microgravity Application, 2007, 24(3):275-278.
[20] Ransohoff T C, Radke C J. Laminar flow of a wetting liquid along the corners of a predominantly gas-occupied noncircular pore[J].Journal of Colloid and Interface Science, 1988, 121(2):392-401.
[21] Concus P, Finn R. Dichotomous behavior of capillary surface in zero gravity[J].Microgravity Science and Technology, 1990, 1(3):87-92.
[22] Chen Y K, Weislogel M M, Nardin C L. Capillary-driven flows along rounded interior corners[J].Journal of Fluid Mechanics, 2006, 566:235-271.
[23] Chen Y K, Weislogel M M, Bolleddula D A. Capillary flow in cylindrical containers with rounded interior corners[C].In 45th AIAA Aerospace Science Meeting and Exhibit, Reno, 2007.
[24] 李永强,刘玲.微重力下变内角毛细驱动流研究[J]. 物理学报, 2014, 63(21):214704. Li Y Q, Liu L.A study of capillary flow in variable interior corners under microgravity[J]. Acta Physica Sinica, 2014, 63(21):214704.
[25] 刘玲. 微重力下扇形内角处的毛细流动研究[D]. 沈阳:东北大学, 2014. Liu L. Study of Capillary Flow in Fan-shaped Interior Corner under Microgravity[D]. Shenyang:Northeastern University, 2014.
[26] 李永强,刘玲,张晨辉,等. 微重力环境下无限长柱体内角毛细流动解析近似解研究[J]. 物理学报, 2013, 62(2):024701. Li Y Q, Liu L, Zhang C H, et al. Analytical approximations for capillary flow in interior corners of infinite long cylinder under microgravity[J]. Acta Physica Sinica, 2013, 62(2):024701.
[27] 李永强,张晨辉,刘玲,等. 微重力下圆管毛细流动解析近似解研究[J]. 物理学报, 2013, 62(4):044701. Li Y Q, Zhang C H, Liu L, et al. The analytical approximate solutions of capillary flow in circular tubes under microgravity[J]. Acta Physica Sinica, 2013, 62(4):044701.
[28] 宋新昌. 亥姆霍兹线圈及麦克斯韦线圈磁场分布及均匀性比较[J]. 磁性材料及器件, 2016, 47(5):16-18, 77. Song X C. Comparison of Magnetic Field Distribution and Homogeneity between Helmholtz coil and Maxwell coil[J]. Journal of Magnetic Materials and Devices, 2016, 47(5):16-18, 77.
[29] QUETTIER, F LICE, MAILFERT, et al. Magnetic compensation of gravity forces in liquid/gas mixtures:surpassing intrinsic limitations of a superconducting magnet by using ferromagnetic inserts[J]. European Physical Journal Applied Physics, 2005, 32(3):167-175.
[30] 张泽宇,黄永华,梁益涛,等. 磁场力非均匀度对液氧磁补偿微重力自由界面的影响[J]. 真空与低温, 2019, 25(6):372-378. Zhang Z Y, Huang Y H, Liang Y T, et al. Impact of Magnetic Force Inhomogeneity on Free Surface of Liquid Oxygen under Magnetically Compensated Microgravity[J]. Vacuum & Cryogenics, 2019, 25(6):372-378.
[1] 吴延鹏, 赵薇, 陈凤君. 不同相对湿度下亲疏水纳米纤维膜空气过滤性能实验研究[J]. 化工学报, 2020, 71(S1): 471-478.
[2] 张雷刚, 许波, 施娟, 陈振乾. 微重力条件下FC-72在针肋表面冷凝传热的实验研究[J]. 化工学报, 2019, 70(S1): 45-53.
[3] 祝及龙, 石万元. 平面上固定接触角蒸发液滴内Marangoni对流失稳现象[J]. 化工学报, 2018, 69(S1): 53-57.
[4] 高明, 孔鹏, 章立新. 恒热流条件下亲疏水表面液滴蒸发特性[J]. 化工学报, 2018, 69(7): 2979-2984.
[5] 齐超, 孙培杰, 耑锐, 王文. 长期在轨运行低温液氧贮箱内汽化过程的模拟[J]. 化工学报, 2016, 67(S2): 58-63.
[6] 唐海达, 张涛, 刘晓华, 江亿. 辐射吊顶表面冷凝液滴脱落尺寸分析[J]. 化工学报, 2016, 67(9): 3552-3558.
[7] 庄大伟, 杨艺菲, 胡海涛, 丁国良. 竖直平板间液桥形状的观测与预测模型开发[J]. 化工学报, 2016, 67(6): 2224-2229.
[8] 姜桂林, 管宁, 张承武, 刘志刚. 不同截面疏水性微肋阵内减阻特性[J]. 化工学报, 2016, 67(4): 1258-1268.
[9] 魏进家, 张永海. 柱状微结构表面强化沸腾换热研究综述[J]. 化工学报, 2016, 67(1): 97-108.
[10] 于明志, 范雪晶, 胡爱娟. 颗粒堆积型多孔介质内部液体形态实验研究及机理分析[J]. 化工学报, 2015, 66(7): 2450-2455.
[11] 吴锫, 罗学刚, 李科, 张思钊. Fe-Sr2Bi2O5光催化降解低密度聚乙烯膜[J]. 化工学报, 2015, 66(5): 1939-1946.
[12] 姜桂林, 张承武, 管宁, 邱德来, 刘志刚. 水在不同接触角微柱群内的流动特征[J]. 化工学报, 2015, 66(5): 1704-1709.
[13] 皇甫洁, 李茜, 李珺, 李春. 模拟微重力下影响重组Escherichia coli外源蛋白质表达途径分析[J]. 化工学报, 2015, 66(12): 4960-4965.
[14] 汪峰, 梁彩华, 杨明涛, 范晨, 张小松. 翅片表面融霜水滞留机理及其影响因素[J]. 化工学报, 2014, 65(z2): 101-106.
[15] 马瑞, 吴玉庭, 刘刚, 马重芳. 蒸汽压缩热泵蒸发器的重力无关性计算[J]. 化工学报, 2014, 65(S1): 125-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!