化工学报

• •    下一篇

核-壳结构分子印迹材料用于定向脱苦的研究

蒋壮飞1, 何家垣1, 马蓉蓉1, 李清瑶1, 杨莉莉1, 谭玲2, 张起辉1   

  1. 1 重庆大学化学化工学院, 重庆 400044;
    2 重庆大学药学院, 重庆 400044
  • 收稿日期:2020-03-02 修回日期:2020-04-14 出版日期:2023-04-17 发布日期:2020-04-29
  • 通讯作者: 张起辉(1979-),男,博士,教授,qhzhang@cqu.edu.cn E-mail:qhzhang@cqu.edu.cn
  • 作者简介:蒋壮飞(1995-),男,硕士研究生,1044579823@qq.com
  • 基金资助:
    国家自然科学基金项目(81973451);医工联合项目(2019CDYGYB027);2019技术预见与制度创新(cstc2019jsyj-yzysbAX0020);市科委项目(cstc2018jcyjAX0661);重庆市教育委员会科学技术研究项目(KJZD-K201800103);重庆市研究生创新基金(CYS18033);中央高校经费(2019CDXYHG0013)

Molecularly imprinted materials with core-shell structure were used in the study of directed desiccation

JIANG Zhuangfei1, HE Jiayuan1, MA Rongrong1, LI Qingyao1, YANG Lili1, TAN Ling2, ZHANG Qihui1   

  1. 1 School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China;
    2 School of Pharmacy, Chongqing University, Chongqing 400044, China
  • Received:2020-03-02 Revised:2020-04-14 Online:2023-04-17 Published:2020-04-29

摘要: SiO2为支撑材料,甲基丙烯酸(MAA)为功能单体,偶氮二异丁腈(AIBN)为引发剂,乙二醇二甲基丙烯酸酯(EGDMA)为交联剂,制备了可选择性吸附柠檬汁中苦味物质的分子印迹材料。利用透射电镜和红外吸收光谱等手段对MIPs进行表征,随后进行吸附能力和选择性研究。结果表明,MIPs具有核-壳结构,且有着良好的吸附性能(27.72 mg/g)和快速吸附能力(60 min),吸附符合二级动力学模型,吸附过程符合Langmuir单层吸附模型。最后,将MIPs用于柠檬汁中苦味物质吴茱萸内酯的去除,结果显示MIPs具有良好的脱苦能力。

关键词: 核-壳材料, 纳米材料, 二氧化硅, 表面分子印迹, 吸附剂, 苦味物质, 脱苦

Abstract: SiO2 as the support material, methacrylic acid (MAA) as the functional monomer, azodiisobutyronitrile (AIBN) as the initiator, ethylene glycol dimethacrylate (EGDMA) as the cross-linking agent, a molecularly imprinted material which can selectively absorb bitter substances in lemon juice was prepared. Transmission electron microscopy and infrared absorption spectroscopy were used to characterize the MIPs, followed by adsorption capacity and selectivity studies. The results showed that MIPs had core-shell structure, good adsorption performance (27.72 mg/g) and fast adsorption capacity (60 min). The adsorption was in accordance with the second-order kinetic model, and the adsorption process was in accordance with the Langmuir monolith adsorption model. Finally, MIPs were used to remove the bitter substance evodine in lemon juice, and the result showed that MIPs had good desiccation ability.

Key words: core-shell material, nanomaterials, silica, surface molecular imprinting, sorbents, bitter substances, take off the bitter

中图分类号: 

  • R917
[1] 左安连,毛海舫, 李琼. 柑橘类果汁脱苦方法研究综述[J]. 香料香精化妆品, 2008, (3):33-39. Zuo A L, Mao H F, Li Q. A review on the methods of removing bitterness from citrus juice[J]. Fragrance Cosmetics, 2008, (3):33-39.
[2] 潘利华,徐迪, 布文婕. 柑橘类果汁脱苦的研究进展[J]. 饮料工业, 2006, (2):6-9. Pan L H, Xu D, Bu W J. Research progress of citrus fruit juice anti-bitterness[J]. Beverage Industry, 2006, (2):6-9.
[3] 孙明元,尹燕, 林洪斌,等. 柠檬汁脱苦工艺条件研究[J]. 食品科技, 2014, (10):106-108. Sun M Y, Yin Y, Lin H B, et al. Study on the process conditions of removing bitter from lemon juice[J]. Food Science and Technology, 2014, (10):106-108.
[4] Trotta F, Drioli E, Baggiani C. Molecular imprinted polymeric membrane for naringin recognition[J]. J. Membrane Sci., 2002, 201:77-84.
[5] Puri M, Kaur A, Singh R S, et al. Immobilized enzyme technology for debittering citrus fruit juices[M]//Busto M D, Ortega N. Food Enzymes:Application of New Technologies. Kerala, India:Transworld Research Network, 2008:91-104.
[6] 贺红宇. 三种脱苦方法对柠檬汁脱苦效果的研究[D]. 成都:四川农业大学, 2013. He H Y. Study on the effects of three methods of removing bitterness from lemon juice[D]. Chengdu:Sichuan Agricultural University, 2013.
[7] Leeh S, Kimj G. Effects of debittering on red grapefruit contratr[J]. Food Chem., 2003, 82:177-1801.
[8] Tasselli F, Donato L, Drioli E. Evaluation of molecularly imprinted membranes based on different acrylic copolymers[J]. J. Membrane Sci., 2008, 320:167-172.
[9] Trotta F, Drioli E, Baggiani C. Molecular imprinted polymeric membrane for naringin recognition[J]. J. Membrane Sci., 2002, 201:77-84.
[10] 张晨,刘志伟. 柑橘类果汁的脱苦[J]. 江苏食品与发酵, 2000, (3):26-28. Zhang C, Liu Z W. Delamination of citrus fruit juices[J]. Jiangsu Food and Fermentation, 2000, (3):26-28.
[11] Busto M D, Cavia-Saiz M, Ortega N, et al. Chapter 20-Enzymatic debittering on antioxidant capacity of grapefruit juice[M]//Processing & Impact on Antioxidants in Beverages. Elsevier Inc., 2014:195-202.
[12] 吴雪韦. 朝鲜淫羊藿的化学成分及生物活性研究[D]. 济南:山东大学,2018. Wu X W. Study on the chemical composition and biological activity of epimedium from Korea[D]. Jinan:Shandong University, 2018.
[13] Cui L, Sun E, Zhang Z H, et al. Metabolite profiles of epimedin b in rats by ultraperformance liquid chromatography/quadrupole-time-of-flight mass spectrometry[J]. J. Agri. Food Chem., 2013, 61:3589-3599.
[14] Trotta F, Drioli E, Baggiani C. Molecular imprinted polymeric membrane for naringin recognition[J]. J. Membrane Sci., 2002, 201:77-84.
[15] 刘永安,刘欣,魏法山,等. 柑橘类果汁脱苦技术研究进展[J]. 食品安全导刊, 2015, (27):137-138. Liu Y A, Liu X, Wei F S, et al. Research progress of citrus juice desiccation technology[J]. Food Safety Guide, 2015, (27):137-138.
[16] 许少丹,谢婧. 柑橘类果汁脱苦技术研究进展[J]. 饮料工业,2012, 15(6):15-19. Xu S D, Xie J. Advances in the technology of citrus juice desiccation[J]. Beverage Industry,2012, 15(6):15-19.
[17] 陈秀霞,张斌. 阳朔金桔脱苦技术的研究现状[J]. 轻工科技,2015,(11):1-2. Chen X X, Zhang B. Research status of Yangshuo kumquat detaching technology[J]. Light Industry Science and Technology, 2015, (11):1-2.
[18] 张夙夙. 袖普酶在柑橘类果汁脱苦中的应用[J]. 安徽农学通报,,2014,(12):39-44. Zhang S S. Application of cuperase in citrus juice desiccating[J]. Journal of Anhui Agriculture, 2014, (12):39-44.
[19] Li X T, Wan J Q, Wang Y, et al. Mechanism of accurate recognition and catalysis of diethyl phthalate (DEP) in wastewater by novel MIL100 molecularly imprinted materials[J]. Applied Catalysis B:Environmental, 2020, 266:118591.
[20] Escobar D, Coelho C, Ruiz M, et al. Molecularly imprinted TiO2 photocatalysts for degradation of diclofenac in water[J]. Colloid. Surface-A:Physicochemical and Engineering Aspects, 2018, 538:729-738.
[21] Liu Y, Shen T, Hu L, et al. Development of a thermosensitive molecularly imprinted polymer resonance light scattering sensor for rapid and highly selective detection of hepatitis A virus in vitro[J]. Sensor Actuat. B-Chem., 2017, 253:1188-1193.
[22] Yang Q, Li C Y, Li J H, et al. Rational construction of a triple emission molecular imprinting sensor for accurate naked-eye detection of folic acid[J]. Nanoscale, 2020, 12(11):6529-6536.
[23] Dowlatshah S, Saraji M. A silica-based three-dimensional molecularly imprinted coating for the selective solid-phase microextraction of difenoconazole from wheat and fruits samples[J]. Analytica Chimica Acta, 2020, 1098:37-46.
[24] Shi S, Fan D, Xiang H, et al. Effective synthesis of magnetic porous molecularly imprinted polymers for efficient and selective extraction of cinnamic acid from apple juices[J]. Food Chem., 2017, 237:198-204.
[25] Liu M, Li X, Li J, et al. Selective separation and determination of glucocorticoids in cosmetics using dual-template magnetic molecularly imprinted polymers and HPLC[J]. J. Colloid Interface Sci., 2017, 504:124-133.
[26] Zhang Y Z, Qin B, Zhang B, et al. Specific enrichment of caffeic acid from Taraxacum mongolicum Hand.-Mazz. by pH and magnetic dual-responsive molecularly imprinted polymers[J]. Analytica Chimica Acta, 2020, 1096:193-202.
[27] Yin Z Z, Cheng S W, Xu L B, et al. Highly sensitive and selective sensor for sunset yellow based on molecularly imprinted polydopamine-coated multi-walled carbon nanotubes[J]. Biosens. Bioelectron., 2018, 100:565-570.
[28] Leila M, Taghi V M, Moosa E, et al, Design and construction of a carbon paste electrode modified with molecularly imprinted polymer-grafted nanocomposites for the determination of thyroxin in biological samples[J]. Analytical Methods, 2020, 12(3):333-344.
[29] Werner A F, Bohn E, Controlled growth of monodisperse silica spheres in the micron size range[J]. J. Colloid Interf. Sci.. 1968, 26:62-69.
[30] Wu J R, Gao P, He T Y, et al. Distribution and content of the limonin in different tissues of citrus[J]. Hubei Agriculture Science, 2015, 54:882-885.
[31] Peng M, Xiang H, Hu X, et al. Boronate affinity-based surface molecularly imprinted polymers using glucose as fragment template for excellent recognition of glucosides[J]. J. Chromatogr. A, 2016:1474, 8-13.
[1] 李安玉, 李双莉, 余碧戈, 马爱英, 周鑫兰, 谢建慧, 蒋艳红, 邓华. 镁浸渍生物炭吸附氨氮和磷:制备优化和吸附机理[J]. 化工学报, 2020, 71(4): 1683-1695.
[2] 林帝出, 杨佳薇, 邓玉莹, 戴敏, 郑西来, 彭昌盛. 滴定-凝胶法制备球形水凝胶吸附材料及其在废水处理中的应用[J]. 化工学报, 2020, 71(3): 914-922.
[3] 刘艳奇, 何路东, 廉培超, 陈鑫智, 梅毅. 黑磷烯稳定性增强研究进展[J]. 化工学报, 2020, 71(3): 936-944.
[4] 李扬, 张扬, 陈宣龙, 龚勋. 钙基吸附剂循环吸附性能对增强式生物质气化制氢的影响研究[J]. 化工学报, 2020, 71(2): 777-787.
[5] 郭佳明, 刘明言, 吴强, 马永丽. 硝酸锂改性钛系离子筛的制备及其吸附性能[J]. 化工学报, 2020, 71(2): 879-888.
[6] 于强, 鹿院卫, 张晓盼, 吴玉庭. 纳米粒子对熔盐复合蓄热材料热物性的影响[J]. 化工学报, 2019, 70(S1): 217-225.
[7] 李哲, 王文龙, 张梦, 孙静, 毛岩鹏, 赵希强, 宋占龙. 碳纳米管材料低频电磁参数及吸波产热特性[J]. 化工学报, 2019, 70(S1): 28-34.
[8] 赵京, 张玉锋, 魏小林, 李腾, 宾峰. 高碱煤燃烧过程中亚微米颗粒物PM1的生成特性[J]. 化工学报, 2019, 70(8): 3113-3120.
[9] 冯可, 王玥, 李金华, 楚学影, 胡思怡, 林志远. Cd2+前体反应时间对CdSe量子棒长径比的调控及其光学特性研究[J]. 化工学报, 2019, 70(7): 2795-2801.
[10] 朱计划, 陈姚, 丘秀莲, 黄宇明, 郑成, 杨伟. 微波辅助溶剂热法制备LiMn1-xMgxPO4/C正极材料[J]. 化工学报, 2019, 70(7): 2775-2785.
[11] 孙燕, 蓝际荣, 郭莉, 孙朋, 叶恒朋, 杜冬云, 占伟. 利用电解锰渣制备As(Ⅲ)吸附材料及其性能研究[J]. 化工学报, 2019, 70(6): 2377-2385.
[12] 贺新福, 龙雪颖, 吴红菊, 张凯博, 周均, 李可可, 张亚婷, 邱介山. 氮掺杂石墨烯/多孔碳复合材料的制备及其氧还原催化性能[J]. 化工学报, 2019, 70(6): 2308-2315.
[13] 郑传杰, 盛昌栋. 高温烟气中吸附剂捕集K的模型及其反应动力学研究[J]. 化工学报, 2019, 70(6): 2259-2268.
[14] 尚志新, 张香兰. γ-巯丙基三乙氧基硅烷水解程度对纳米二氧化硅接枝机理影响的DFT研究[J]. 化工学报, 2019, 70(5): 1663-1673.
[15] 王彩红, 孙婧, 季书馨, 王燕子, 刘文芳. 聚乙烯亚胺/多巴胺改性氧化硅固定碳酸酐酶[J]. 化工学报, 2019, 70(5): 1887-1893.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!