化工学报 ›› 2020, Vol. 71 ›› Issue (6): 2840-2849.doi: 10.11949/0438-1157.20200207

• 材料化学工程与纳米技术 • 上一篇    下一篇

自牺牲模板法制备氮掺杂碳化钼/碳析氢电催化剂

范小明1,2(),陈希奎1,汪子涵1,曹帅1,程凤如1,杨则恒1,张卫新1()   

  1. 1.合肥工业大学化学与化工学院,安徽 合肥 230009
    2.合肥工业大学材料科学与工程学院,安徽 合肥 230009
  • 收稿日期:2020-02-28 修回日期:2020-04-13 出版日期:2020-06-05 发布日期:2020-04-17
  • 通讯作者: 张卫新 E-mail:xmfan@hfut.edu.cn;wxzhang@hfut.edu.cn
  • 作者简介:范小明(1986—),男,博士,讲师,xmfan@hfut.edu.cn
  • 基金资助:
    国家自然科学基金项目(21808046);中国博士后科学基金资助项目(2018M630701);安徽省科技重大专项(17030901067)

Self-sacrificing templated preparation of nitrogen-doped molybdenum carbide/carbon as hydrogen evolution electrocatalyst

Xiaoming FAN1,2(),Xikui CHEN1,Zihan WANG1,Shuai CAO1,Fengru CHENG1,Zeheng YANG1,Weixin ZHANG1()   

  1. 1.School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
    2.School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
  • Received:2020-02-28 Revised:2020-04-13 Online:2020-06-05 Published:2020-04-17
  • Contact: Weixin ZHANG E-mail:xmfan@hfut.edu.cn;wxzhang@hfut.edu.cn

摘要:

采用g-C3N4为自牺牲模板和氮源,葡萄糖为碳源,钼酸铵为钼源,制备具有二维纳米结构的氮掺杂碳化钼修饰碳纳米片(N-Mo2C/C),并评价其电催化析氢性能。利用X射线衍射仪(XRD)、场发射扫描电镜(FESEM)、透射电镜(TEM)、拉曼(Raman)等测试手段对N-Mo2C/C的组成、形貌及结构进行分析。结果表明,氮掺杂的Mo2C纳米颗粒均匀分散在二维碳纳米片上,粒径主要分布在3~5 nm。利用电化学工作站测试 N-Mo2C/C的电催化析氢性能,在1 mol/L KOH溶液中,电流密度为10 mA/cm2时其对应的过电势为185 mV,Tafel斜率为69 mV/dec,经20 h循环可维持稳定的析氢电势。

关键词: 碳化钼, 纳米材料, 电化学, 催化剂, 析氢性能

Abstract:

Using g-C3N4 as self-sacrificing template and nitrogen source, glucose as carbon source, and ammonium molybdate as molybdenum source, nitrogen-doped molybdenum carbide modified carbon nanosheets (N-Mo2C/C) with two-dimensional nanostructures were prepared and evaluated its electrocatalytic hydrogen evolution performance. X-ray diffractometer (XRD), field emission scanning electron microscope (FESEM), transmission electron microscope (TEM), Raman spectroscopy, etc. were employed to analyze the compositions, morphologies and microstructures of the as-prepared N-Mo2C/C. The results show that ultrafine nitrogen-doped Mo2C nanoparticles with a diameter of 3—5 nm can be uniformly distributed on the 2D carbon nanosheets. The electrocatalytic performances of N-Mo2C/C for hydrogen evolution were tested by using an electrochemical workstation, which demonstrates that the N-Mo2C/C only exhibits an overpotential of 185 mV at 10 mA/cm2 in 1 mol/L KOH solution, and a stable hydrogen evolution potential could be maintained for 20 h in a long-term cycling test.

Key words: molybdenum carbide, nanomaterials, electrochemistry, catalyst, hydrogen evolution performance

中图分类号: 

  • O 614.61

图1

NMC的制备流程示意图"

图2

NMC-700、NMC-800和NMC-900样品的XRD谱图(a)及拉曼谱图(b)"

图3

NMC-700(a)、NMC-800(b)和NMC-900(c)的FESEM图;NMC-800的TEM图(d);NMC-800的HRTEM图(e)和选区电子衍射图(f);NMC-800TEM图(g)及相应的元素分布图(C,N和Mo元素)[(h)~(j)]"

图4

NMC-800样品的氮气吸附-脱附等温线(a)及对应的孔径分布曲线(b)"

图5

不同催化剂的C,N,Mo元素高分辨XPS谱图:NMC-700 (a)~(c),NMC-800 (d)~(f),NMC-900 (g)~(i)"

表1

高分辨XPS谱图中不同催化剂的各元素含量"

催化剂

C/%

(atom)

Mo/%

(atom)

N/%

(atom)

O/%

(atom)

Mo-N/%(atom)
NMC-70077.783.694.5413.990.95
NMC-80075.685.258.6610.412.27
NMC-90082.564.144.099.210.92

图6

CFP、NMC-700、NMC-800、NMC-900和商用Pt/C的极化曲线(a)和Tafel图(b)(电解液:1 mol/L KOH,扫描速率:10 mV/s);NMC-800在1 mol/L KOH中的稳定性测试曲线(c);NMC-800经过2000次循环前后的极化曲线(d)"

表2

N-Mo2C/C催化剂的HER活性与文献报道结果比较"

Electrocatalyst

j/

(mA/cm2)

η/(mV)

b/

(mV/dec )

Electrolyte

solution

Ref.
NMC-80010185691M KOHthis work
MoC/C10≈2001141M KOH[30]
Mo2C@N-C(S)10271901M KOH[31]
Mo2C NWAs/CFP10≈168721M KOH[32]
Mo/Mo2C@G-80010159781M KOH[33]
Mo2C@NC10≈247781M KOH[17]

图7

NMC-700(a)、NMC-800(b)及NMC-900(c)在不同扫描速率下的CV曲线(1 mol/L KOH);NMC-700,NMC-800及NMC-900电容电流与扫描速率的关系(d)"

1 Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting[J]. Chem. Soc. Rev., 2009, 38(1): 253-278.
2 Pu Z, Amiinu I S, Kou Z, et al. RuP2-based catalysts with platinum-like activity and higher durability for hydrogen evolution reaction at all pH values[J]. Angew. Chem. Int. Ed., 2017, 56(38): 11559-11564.
3 Li Y, Chen W, Pei J, et al. Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction[J]. Angew. Chem. Int. Ed., 2017, 56(50): 16086-16090.
4 Pu Z, Xue Y, Amiinu I S, et al. Ultrasmall tungsten phosphide nanoparticles embedded in nitrogen-doped Carbon as a highly active and stable hydrogen-evolution electrocatalyst[J]. J. Mater. Chem. A., 2016, 4(40): 15327-15332.
5 Wang X, Wang H, Xu X, et al. 3D self-assembly of ultrafine molybdenum carbide confined in N-doped carbon nanosheets for efficient hydrogen production[J]. Nanoscale, 2017, 9(41): 15895-15900.
6 Lu Q, Yu Y, Ma Q, et al. 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions[J]. Adv. Mater., 2016, 28(10): 1917-1933.
7 Xiao P, Ge X, Wang H, et al. Novel molybdenum carbide-tungsten carbide composite nanowires and their electrochemical activation for efficient and stable hydrogen evolution[J]. Adv. Funct. Mater., 2015, 25(10): 1520-1526.
8 Yuan W J, Huang Q, Yang X J, et al. Two-dimensional lamellar Mo2C for electrochemical hydrogen production: insights into the origin of hydrogen evolution reaction activity in acidic and alkaline electrolytes[J]. ACS Appl. Mater. Interfaces, 2018, 10(47): 40500-40508.
9 Xiao P, Sk M A, Thia L, et al. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction[J]. Energy Environ. Sci., 2014, 7(8): 2624-2629.
10 Kimmel Y C, Xu X, Yu W, et al. Trends in electrochemical stability of transition metal carbides and their potential use as supports for low-cost electrocatalysts[J]. ACS Catal., 2014, 4(5): 1558-1562.
11 Gao Q, Zhang W, Shi Z, et al. Structural design and electronic modulation of transition‐metal‐carbide electrocatalysts toward efficient hydrogen evolution[J]. Adv. Mater., 2018, 31(2): 1802880.
12 Vrubel H, Hu X. Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions[J]. Angew. Chem. Int. Ed., 2012, 51(51): 12703-12706.
28 Ji L, Wang J, Teng X, et al. N, P-Doped molybdenum carbide nanofibers for efficient hydrogen production[J]. ACS Appl. Mater. Interfaces, 2018, 10(17): 14632-14640.
29 Tang C, Zhang H, Xu K, et al. Unconventional molybdenum carbide phases with high electrocatalytic activity for hydrogen evolution reaction[J]. J. Mater. Chem. A, 2019, 7(30): 18030-18038.
13 Wei H F, Xi Q Y, Chen X A, et al. Molybdenum carbide nanoparticles coated into the graphene wrapping N-doped porous carbon microspheres for highly efficient electrocatalytic hydrogen evolution both in acidic and alkaline media[J]. Adv. Sci., 2018, 5(3): 1700733.
14 Liu Z Q, Yang T O, Ye Y Q, et al. Heterostructures composed of N-doped carbon nanotubes encapsulating cobalt and β-Mo2C nanoparticles as bifunctional electrodes for water splitting [J]. Angew. Chem. Int. Ed., 2019, 58(15): 4923-4928.
15 Yu H J, Shang L, Bian T, et al. Carbon nanosheets: nitrogen-doped porous carbon nanosheets templated from g-C3N4 as metal-free electrocatalysts for efficient oxygen reduction reaction[J]. Adv. Mater., 2016, 28(25): 5140-5140.
16 Li B, Xi B, Feng Z, et al. Hierarchical porous nanosheets constructed by graphene-coated, interconnected TiO2 nanoparticles for ultrafast sodium storage[J]. Adv. Mater., 2018, 30(10): 1-9.
17 Chi J Q, Xie J Y, Zhang W W, et al. N‑Doped sandwich-structured Mo2C@C@Pt interface with ultralow Pt loading for pH-universal hydrogen evolution reaction[J]. ACS Appl. Mater. Interfaces, 2019, 11(4): 4047-4056.
18 Ji L, Wang J, Guo L, et al. In situ O2-emission assisted synthesis of molybdenum carbide nanomaterials as an efficient electrocatalyst for hydrogen production in both acidic and alkaline media[J]. J. Mater. Chem. A, 2017, 5(10): 5178-5186.
30 Han W W, Chen L L, Ma B, et al. Ultra-small Mo2C nanodots encapsulated in nitrogen doped porous carbon for pH-universal hydrogen evolution: insights into the synergetic enhancement by nitrogen doping and structure defects[J]. J. Mater. Chem. A, 2019, 7(42): 4734-4743.
31 Ji M, Niu S Q, Du Y C, et al. Anion induced size selection of β-Mo2C supported on nitrogen-doped carbon nanotubes for electrocatalytic hydrogen evolution[J]. ACS Sustain. Chem. Eng., 2018, 6(9): 11922-11929.
32 Zhang X, Zhou F, Pan W Y, et al. General construction of molybdenum-based nanowire arrays for pH-universal hydrogen evolution electrocatalysis[J]. Adv. Funct. Mater., 2018, 28(43): 1804600.
33 Zhu X Q, Zhang X Y, Huang B L, et al. An interfacial electron transfer relay center for accelerating the hydrogen evolution reaction[J]. J. Mater. Chem. A, 2019, 7(31): 18304-18310.
19 Zhang H B, Ma Z J, Duan J J, et al. Active sites implanted carbon cages in core-shell architecture: highly active and durable electrocatalyst for hydrogen evolution reaction[J]. ACS Nano., 2015, 10(1): 684-694.
20 Hou D, Zhu S Y, Tian H, et al. Two-dimensional sandwich-structured mesoporous Mo2C/carbon/graphene nanohybrids for efficient hydrogen production electrocatalysts[J]. ACS Appl. Mater. Interfaces, 2018, 10(47): 40800-40807.
21 贺新福, 龙雪颖, 吴红菊, 等. 氮掺杂石墨烯/多孔碳复合材料的制备及其氧还原催化性能[J]. 化工学报, 2019, 70(6): 2308-2315.
He X F, Long X Y, Wu H J, et al. Preparation of nitrogen-doped graphene/porous carbon composite and oxygen reduction catalytic performance[J]. CIESC Journal, 2019, 70(6): 2308-2315.
22 Jia J, Xiong T, Zhao L, et al. Ultrathin N-doped Mo2C nanosheets with exposed active sites as efficient electrocatalyst for hydrogen evolution reactions[J]. ACS Nano., 2017, 11(12): 12509-12518.
23 Wang J, Chen W, Wang T, et al. A strategy for highly dispersed Mo2C/MoN hybrid nitrogen-doped graphene via ion-exchange resin synthesis for efficient electrocatalytic hydrogen reduction[J]. Nano Res., 2018, 11(9): 4535-4548.
24 水恒心, 潘冯弘康, 金田, 等. 双功能yolk-shell钴@钴氮碳掺杂氧电极催化剂[J]. 化工学报, 2018, 69(11): 4702-4712.
Shui H X, Panfeng H K, Jin T, et al. York-shell Co@Co-N/C of bifunctional oxygen electrocatalysts[J]. CIESC Journal, 2018, 69(11): 4702-4712.
25 Lu C, Tranca D, Zhang J, et al. Molybdenum carbide-embedded nitrogen-doped porous carbon nanosheets as electrocatalysts for water splitting in alkaline media[J]. ACS Nano., 2017, 11(4): 3933-3942.
26 Liu B C, Li H, Cao B, et al. Few layered N, P dual-doped carbon-encapsulated ultrafine MoP nanocrystal/MoP cluster hybrids on carbon cloth: an ultrahigh active and durable 3D self-supported integrated electrode for hydrogen evolution reaction in a wide pH range[J]. Adv. Funct. Mater., 2018, 28(30): 1801527.
34 Xu Z X, Zhang G F, Lu C B, et al. Molybdenum carbide nanoparticles decorated hierarchical tubular carbon superstructures with vertical nanosheet arrays for efficient hydrogen evolution[J]. J. Mater. Chem. A, 2018, 6(39): 18833-18838.
27 Anjum M, Lee M H, Lee J S. Boron and nitrogen Co-doped molybdenum carbide nanoparticles imbedded in BCN network as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions[J]. ACS Catal., 2018, 8(9): 8296-8305.
[1] 韩超灵, 陈振乾. 添加碳纳米颗粒对磷氮双掺杂石墨烯电化学特性的影响[J]. 化工学报, 2020, 71(S1): 448-453.
[2] 王永胜,兰小林,邱天,张新平,吴莹莹,陈莉,徐伟祥,郭栋杰,段正康. 铜基石墨烯复合催化剂的合成与表征[J]. 化工学报, 2020, 71(6): 2889-2899.
[3] 郑沐云, 万宇驰, 吕瑞涛. 电催化氮气还原合成氨催化材料研究进展[J]. 化工学报, 2020, 71(6): 2481-2491.
[4] 高利军, 白思林, 梁苏岑, 穆野, 董强, 胡超. ZIF衍生多孔碳纳米纤维用于高效电容去离子的研究[J]. 化工学报, 2020, 71(6): 2760-2767.
[5] 董灵玉, 葛睿, 原亚飞, 唐宋元, 郝广平, 陆安慧. 多孔炭基二氧化碳电催化材料研究进展[J]. 化工学报, 2020, 71(6): 2492-2509.
[6] 张睿, 沈馨, 王金福, 张强. 锂离子在三维骨架复合锂金属负极中的沉积规律[J]. 化工学报, 2020, 71(6): 2688-2695.
[7] 周锋, 田利军, 高磊, 吴忠帅. 电化学阴极剥离制备少层石墨烯及其微型超级电容器[J]. 化工学报, 2020, 71(6): 2724-2734.
[8] 毕宏晖,焦帅,魏风,何孝军. 珊瑚状氮掺杂多孔碳的制备及其超电容性能[J]. 化工学报, 2020, 71(6): 2880-2888.
[9] 王赫, 秦楠, 郭鑫, 郑俊生, 赵基钢. 锂离子电容器硬碳负极材料的表面改性及其电化学性能研究[J]. 化工学报, 2020, 71(6): 2735-2742.
[10] 张睿哲, 李可可, 张凯博, 刘薇, 郑莉思, 张亚婷. 煤基碳量子点/氮化碳复合材料制备及其光催化还原CO2性能[J]. 化工学报, 2020, 71(6): 2788-2794.
[11] 田同振, 李念武, 于乐. 中空碳基材料在电解水中的研究进展[J]. 化工学报, 2020, 71(6): 2466-2480.
[12] 胡涛, 张熊, 安亚斌, 李晨, 马衍伟. 锂离子电容器碳正极材料的研究进展[J]. 化工学报, 2020, 71(6): 2530-2546.
[13] 徐晓倩, 程俊霞, 朱亚明, 高丽娟, 赖仕全, 赵雪飞. 针状焦基电容器碳质电极材料的制备及电化学性能研究[J]. 化工学报, 2020, 71(6): 2830-2839.
[14] 杨通,何小波,银凤翔. M-MOF-74(M=Ni, Co, Zn)的制备及其电化学催化合成氨性能[J]. 化工学报, 2020, 71(6): 2857-2870.
[15] 王雅倩,鲁晓,彭波. 磁场对(C4H9NH3)2(CH3NH3)Pb2I7钙钛矿发光特性调控的研究[J]. 化工学报, 2020, 71(6): 2912-2917.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 常春, 马晓建, 岑沛霖. Kinetic Studies on Wheat Straw Hydrolysis to Levulinic Acid[J]. CIESC Journal, 2009, 17(5): 835 -839 .
[2] 陈敏, 姚善泾, 张虹, 梁新乐. Purification and Characterization of a Versatile Peroxidase from Edible Mushroom Pleurotus eryngii[J]. CIESC Journal, 2010, 18(5): 824 -829 .
[3] 余从立, 刘艳梅, 陈纲领, 顾学红, 邢卫红. Pretreatment of Isopropanol Solution from Pharmaceutical Industry and Pervaporation Dehydration by NaA Zeolite Membranes[J]. CIESC Journal, 2011, 19(6): 904 -910 .
[4] 王洪斌,徐春明. 渣油催化裂化提升管反应器性能的数值模拟——喷嘴射流速度与角度对流动反应的影响 [J]. CIESC Journal, 1999, 50(2): 200 -207 .
[5] 季铁军;罗固源;王丹云;许晓毅;朱亮.

螺旋升流式反应器系统较长泥龄时运行效果及其流态释因

[J]. CIESC Journal, 2007, 58(10): 2613 -2618 .
[6] 梁玉蓉, 谭英杰. PP/黏土纳米复合材料的结构与性能 [J]. 化工学报, 2008, 59(6): 1571 -1577 .
[7] 李伟锋, 孙志刚, 刘海峰, 王辅臣. 两喷嘴对置撞击流径向射流流动特征 [J]. 化工学报, 2009, 60(10): 2453 -2459 .
[8] 邹江, 彭晓峰, 颜维谋. 壁面粗糙度对通道流动特性的影响 [J]. 化工学报, 2008, 59(1): 25 -31 .
[9] . 1986年本刊审稿者名单 [J]. CIESC Journal, 1987, 38(1): 125 .
[10] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .