化工学报 ›› 2020, Vol. 71 ›› Issue (7): 2993-2999.doi: 10.11949/0438-1157.20200181

• 热力学 • 上一篇    下一篇

邻甲酚-间二甲苯-乙二醇液液平衡数据的测定与关联

何莉(),邹雄,叶昊天,李香琴,董宏光()   

  1. 大连理工大学化工学院,辽宁 大连 116024
  • 收稿日期:2020-02-25 修回日期:2020-04-24 出版日期:2020-07-05 发布日期:2020-07-09
  • 通讯作者: 董宏光 E-mail:heli_952129106@mail.dlut.edu.cn;hgdong@dlut.edu.cn
  • 作者简介:何莉(1993—),女,硕士研究生,heli_952129106@mail.dlut.edu.cn
  • 基金资助:
    国家自然科学基金项目(21276039)

Measurement and correlation of liquid-liquid equilibrium data for o-cresol-m-xylene-ethylene glycol

Li HE(),Xiong ZOU,Haotian YE,Xiangqin LI,Hongguang DONG()   

  1. School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
  • Received:2020-02-25 Revised:2020-04-24 Online:2020-07-05 Published:2020-07-09
  • Contact: Hongguang DONG E-mail:heli_952129106@mail.dlut.edu.cn;hgdong@dlut.edu.cn

摘要:

乙二醇可从含芳烃组分油品中选择性萃取酚类,为支撑焦化含酚油中的酚类化合物萃取分离新工艺开发,针对其组分特点,在现有相平衡数据基础上选定代表物,利用液液平衡釜法测出常压下303.15、313.15和323.15 K时邻甲酚-间二甲苯-乙二醇体系液液相平衡数据,并利用Othmer-Tobias方程、Hand方程、Bachman方程分别进行实验数据可靠性检验,其线性相关系数的平方均大于0.99。同时分别用NRTL和UNIQUAC活度系数模型对实验数据进行关联,回归得到不同温度下的模型参数,模型计算值与实验数据对比后发现其均方根偏差小于1.8%,说明NRTL和UNIQUAC模型均可较好地描述该三元体系相平衡行为。

关键词: 萃取, 相平衡, 邻甲酚, 乙二醇, 间二甲苯, 热力学

Abstract:

Ethylene glycol can selectively extract phenols from oils containing aromatic hydrocarbon components. To provide fundamental data to help developing new processes for extracting and separating phenols from coking phenolic oil by ethylene glycol, a simplified design method was adopted due to the complicated components of coking phenolic oil, that was o-cresol and m-xylene chosen as typical substances of phenolic compounds and aromatics based on existing phase equilibrium data, respectively. The ternary liquid-liquid equilibrium data of the o-cresol-m-xylene-ethylene glycol system were measured at 303.15, 313.15 and 323.15 K under atmospheric pressure. The reliability of the liquid-liquid equilibrium data at different temperatures was verified by Othmer-Tobias, Hand as well as Bachman equations. All of squares of correlation coefficients were greater than 0.99, which indicates the reliability of the measured experimental data was good. The experimental data were correlated by both NRTL and UNIQUAC models. The binary interaction energy parameters at different temperatures were obtained by data regression. As a result, the phase equilibrium data were calculated and compared with the experimental data. The root-mean-square deviations (RMSD) were less than 1.8%, indicating that NRTL and UNIQUAC models can successfully describe the phase equilibrium behavior of the system.

Key words: extraction, phase equilibria, o-cresol, ethylene glycol, m-xylene, thermodynamics

中图分类号: 

  • TQ 028.3

图1

液液平衡釜"

表1

间二甲苯(1)-邻甲酚(2)-乙二醇(3)液液相平衡数据"

T/KRaffinate phaseExtraction phaseDS
w1w2w3w1w2w3
303.150.98520.01400.00080.02410.08740.88856.24255.21
0.94730.05040.00220.05480.21650.72874.3074.26
0.91750.07860.00390.08620.31680.59694.0342.90
0.89030.10180.00790.11290.34160.54553.3626.46
0.85740.12930.01330.14680.36510.48812.8216.49
0.82720.15120.02150.20050.39090.40862.5910.67
0.76140.20100.03760.28880.41030.30092.045.38
0.71430.23310.05260.33990.41510.24511.783.74
313.150.97520.02460.00020.03150.09530.87323.87119.93
0.93150.06680.00170.06070.22150.71773.3250.89
0.90950.08500.00550.09940.30520.59543.5932.85
0.87630.11540.00830.11760.33350.54892.8921.53
0.84730.13730.01540.15090.35830.49082.6114.65
0.81200.16550.02250.21270.37700.41042.288.70
0.73860.21370.04780.30190.39790.30021.864.56
0.69910.24030.06070.35140.40170.24701.673.33
323.150.96890.03050.00060.03240.09400.87353.0892.16
0.91680.08090.00240.06400.22210.71402.7539.33
0.87850.11150.01000.10690.29260.60062.6221.57
0.84930.13550.01520.12550.32480.54982.4016.22
0.81720.15290.02980.16060.34610.49332.2611.52
0.77550.18530.03920.22550.37970.39482.057.05
0.72020.22150.05830.30710.39070.30231.764.14
0.67820.24770.07410.35920.39210.24871.582.99

图2

303.15 K间二甲苯-邻甲酚-乙二醇液液平衡相图"

图3

313.15 K间二甲苯-邻甲酚-乙二醇液液平衡相图"

图4

323.15 K间二甲苯-邻甲酚-乙二醇液液平衡相图"

图5

Othmer-Tobias、Hand和Bachman方程线性图"

表2

Othmer-Tobias、Hand和Bachman方程参数"

T/KOthmer-TobiasHandBachman
ABR2pqR2mnR2
303.151.90970.97070.99191.49790.90230.9958–0.15801.15420.9991
313.151.94411.06600.99271.56781.01810.9913–0.17101.15870.9987
323.151.82881.12280.99091.52361.09510.9983–0.19281.16480.9963

表3

间二甲苯(1)-邻甲酚(2)-乙二醇(3)体系二元交互作用参数"

T/Ki-jNRTLRMSD/%UNIQUACRMSD/%
(gij-gii)/(J·mol-1)(gji-gjj)/(J·mol-1)αij(uij-uii)/(J·mol-1)(uji-ujj)/(J·mol-1)
303.151-2–1992.112130.650.30.988–3110.951641.631.132
1-314801.299584.970.3–7382.30–1093.76
2-3–603.83–3173.880.471492.72–1575.74
313.151-2–3591.052500.810.31.150–2147.941278.701.031
1-316835.859471.360.3–38966.86–831.95
2-3–126.26–4554.050.471879.11–2308.78
323.151-2–3619.171718.880.31.728–2006.431259.561.579
1-314632.649405.780.3–34919.17–872.03
2-3–306.42–4220.630.472038.69–2885.14
1 战风涛, 吕志凤, 王洛秋, 等. 催化柴油中的酚类化合物及其对柴油安定性的影响[J]. 燃料化学学报, 2000, 28(1): 59-62.
Zhan F T, Lu Z F, Wang L Q, et al. Identification of phenolic compounds in LCOs and their effects on stability of diesels[J]. Journal of Fuel Chemistry and Technology, 2000, 28(1): 59-62.
2 韩冬雪, 邸慧双, 宫红, 等. 焦化柴油中酚类化合物的分离分析[J]. 当代化工, 2015, 44(11): 2528-2531.
Han D X, Di H S, Gong H, et al. Analysis of phenolic compounds in coker diesel[J]. Contemporary Chemical Industry, 2015, 44(11): 2528-2531.
3 刘兴坤, 张香兰, 刘潜, 等. 正十二烷-甲苯-苯酚三元体系液液相平衡数据的测定与关联[J]. 高校化学工程学报, 2018, 32(2): 275-279.
Liu X K, Zhang X L, Liu Q, et al. Determination and correlation of liquid equilibrium of the n-dodecane-toluene-phenol ternary system[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(2): 275-279.
4 任洪凯, 邓文安, 李传, 等. 中/低温煤焦油酚类化合物的组成研究[J]. 煤炭转化, 2013, 36(2): 67-70.
Ren H K, Deng W A, Li C, et al. Study on the composition of phenolic compounds in middle/low temperature coal tar[J]. Coal Conversion, 2013, 36(2): 67-70.
5 Yao C, Hou Y, Ren S, et al. Ternary phase behavior of phenol + toluene + zwitterionic alkaloids for separating phenols from oil mixtures via forming deep eutectic solvents[J]. Fluid Phase Equilibria, 2017, 448: 116-122.
6 Jiao T, Li C, Zhuang X, et al. The new liquid-liquid extraction method for separation of phenolic compounds from coal tar[J]. Chemical Engineering Journal, 2015, 266: 148-155.
7 Jiao T, Qin X, Zhang H, et al. Separation of phenol and pyridine from coal tar via liquid–liquid extraction using deep eutectic solvents[J]. Chemical Engineering Research and Design, 2019, 145: 112-121.
8 Schlosberg R H, Scouten C G. Removal of phenols from phenol-containing streams: US4256568[P]. 1981-3-17.
9 文峰. 焦油萃取提酚新工艺的开发[J]. 上海化工, 2017, 42(3): 20-23.
Wen F. Development of a new technology for extracting phenol from coal tar[J]. Shanghai Chemical Industry, 2017, 42(3): 20-23.
10 Gai H, Qiao L, Zhong C, et al. A solvent based separation method for phenolic compounds from low-temperature coal tar[J]. Journal of Cleaner Production, 2019, 223: 1-11.
11 刘继东, 刘爽, 吕建华, 等. 从含酚馏分油中萃取酚的溶剂选择及萃取条件研究[J]. 石油天然气与化工, 2017, 46(4): 30-34.
Liu J D, Liu S, Lv J H, et al. Study on solvent selection and extraction conditions of extracting phenolic compounds from distillate oil containing phenol[J]. Chemical Engineering of Oil & Gas, 2017, 46(4): 30-34.
12 Meng H, Ge C T, Ren N N, et al. Complex extraction of phenol and cresol from model coal tar with polyols, ethanol amines, and ionic liquids thereof[J]. Industrial & Engineering Chemistry Research, 2014, 53(1): 355-362.
13 Semeniuk B. Liquid-liquid equilibria in the ternary systems of ethanediol with phenol and an arene[J]. Fluid Phase Equilibria, 1996, 115(1/2): 193-204.
14 Dai F, Xin K, Song Y, et al. Liquid-liquid equilibria for the extraction of phenols from alkane using ethylene glycol[J]. Fluid Phase Equilibria, 2016, 419: 50-56.
15 Liu X, Zhang X. Solvent screening and liquid-liquid measurement for extraction of phenols from aromatic hydrocarbon mixtures[J]. The Journal of Chemical Thermodynamics, 2019, 129: 12-21.
16 张海永, 刘潜, 刘兴坤, 等. 低温煤焦油中正十二烷-甲苯-苯酚的相平衡及分离[J]. 化工学报, 2018, 69(8): 3479-3487.
Zhang H Y, Liu Q, Liu X K, et al. Phase equilibrium and separation of n-dodecane-toluene-phenol in low temperature coal tar[J]. CIESC Journal, 2018, 69(8): 3479-3487.
17 陈赟, 吕冉, 熊康宁, 等. 甲基异丙基甲酮-苯酚-对苯二酚-水的液液相平衡数据测定, 模型关联及萃取过程模拟[J]. 化工学报, 2018, 69(4): 1299-1306.
Chen Y, Lü R, Xiong K N, et al. Experimental determination, thermodynamic modeling and process simulation of methyl isopropyl ketone-phenol-hydroquinone-water quaternary systems[J]. CIESC Journal, 2018, 69(4): 1299-1306.
18 杨楚芬, 钱宇, 章莉娟, 等. 甲基异丁基酮-水-苯酚三元物系液液相平衡数据的测定与关联[J]. 化工学报, 2007, 58(4): 805-809.
Yang C F, Qian Y, Zhang L J, et al. Measurement and correlation of liquid-liquid equilibrium data for methyl isobutyl ketone-water-phenol ternary system[J]. Journal of Chemical Industry and Engineering(China), 2007, 58(4): 805-809.
19 冯艺荣, 盖恒军, 郭凯, 等. 甲基戊烯酮-水-邻苯二酚三元物系液液相平衡数据的测定与关联[J]. 化工学报, 2017, 68(3): 848-853.
Feng Y R, Gai H J, Guo K, et al. Measurement and correlation of liquid-liquid equilibrium data for mesityl oxide-water-catechol ternary system[J]. CIESC Journal, 2017, 68(3): 848-853.
20 盖恒军, 国洪跃, 宋红兵. 甲基戊烯酮-水-苯酚三元物系液液相平衡数据的测定与关联[J]. 高校化学工程学报, 2015, 29(6): 1320-1324.
Gai H J, Guo H Y, Song H B. Measurement and correlation of liquid-liquid equilibrium data of mesityl oxide-water-phenol ternary system[J]. Journal of Chemical Engineering of Chinese Universities, 2015, 29(6): 1320-1324.
21 Luo L, Liu D, Li L, et al. Measurements and thermodynamic modeling of liquid-liquid equilibria in ternary system 2-methoxy-2-methylpropane + p-cresol + water[J]. Chinese Journal of Chemical Engineering, 2016, 24(3): 360-364.
22 Chen Y, Zhou S, Chen H, et al. Extraction of o-, m- and p-cresol from aqueous solution with methyl isopropyl ketone: equilibrium, correlations, and COSMO-RS predictions[J]. The Journal of Chemical Thermodynamics, 2017, 115: 180-190.
23 Zhou S, Xiong K, Li L, et al. Liquid-liquid equilibrium for methyl butyl ketone + o-, m-, p-cresol + water ternary systems and COSMO-SAC predictions[J]. The Journal of Chemical Thermodynamics, 2018, 127: 17-24.
24 Zhou S, Liao M, Liu D, et al. Liquid–liquid equilibrium for the ternary systems methyl tert-butyl ketone + o-, m-, p-cresol + water at (298.2, 313.2, and 323.2) K[J]. Journal of Chemical & Engineering Data, 2017, 62(7): 1929-1936.
25 Othmer D, Tobias P. Liquid-liquid extraction data — the line correlation[J]. Industrial & Engineering Chemistry, 1942, 34(6): 693-696.
26 Hand D B. Dineric distribution[J]. The Journal of Physical Chemistry, 1929, 34(9): 1961-2000.
27 Bachman I. Tie lines in ternary liquid systems[J]. Industrial & Engineering Chemistry Analytical Edition, 1940, 12(1): 38-39.
28 Renon H, Prausnitz J M. Local compositions in thermodynamic excess functions for liquid mixtures[J]. AIChE Journal, 1968, 14(1): 135-144.
29 Fredenslund A, Jones R L, Prausnitz J M. Group-contribution estimation of activity coefficients in nonideal liquid mixtures[J]. AIChE Journal, 1975, 21(6): 1086-1099.
30 Ma S, Yu Q, Hou Y, et al. Screening monoethanolamine as solvent to extract phenols from alkane[J]. Energy & Fuels, 2017, 31(11): 12997-13009.
31 Lv Y, Ding W, Liang L, et al. Liquid–liquid equilibrium study in the n-heptane + phenol + sulfolane ternary system[J]. Russian Journal of Physical Chemistry A, 2018, 92(11): 2124-2127.
32 Zhou S, Li L, Wang Y, et al. Measurement, correlation and COSMO-SAC prediction of liquid-liquid equilibrium for the ternary systems, mesityl oxide + o-, m-, p-cresol + water, at 333.2 K and 353.2 K[J]. Fluid Phase Equilibria, 2017, 440: 45-53.
33 Mohsen-Nia M, Paiker I. Ternary and quaternary liquid + liquid equilibria for systems of (water + toluene + m-xylene + phenol) [J]. Journal of Chemical & Engineering Data, 2007, 52(1): 180-183.
[1] 裴后举, 蒋彦龙, 施红, 崔永龙, 陈常栋, 钱晓辉. 基于M-L湍流模型的浮空器强迫对流换热[J]. 化工学报, 2020, 71(S1): 136-141.
[2] 王晨, 折晓会, 张小松. 含空气净化过程的液态空气储能热力学研究[J]. 化工学报, 2020, 71(S1): 23-30.
[3] 阿嵘, 庞丽萍, 杨东升, 齐玢. 高速飞行器机载综合热管理系统设计与优化[J]. 化工学报, 2020, 71(S1): 315-321.
[4] 孟繁鑫, 孙佳宁, 周月, 高赞军, 程定斌. 飞机环控系统空气循环机仿真建模及试验校核[J]. 化工学报, 2020, 71(S1): 328-334.
[5] 郭良, 李恒, 庞丽萍, 毛晓东, 赵竞全, 杨晓东. 高速运载器发电/制冷联合系统稳态性能[J]. 化工学报, 2020, 71(S1): 391-396.
[6] 郭栋才, 盛强, 杨鹏, 徐捷, 王泽, 杨波, 曹娇坤. 基于热电效应的高效环控系统[J]. 化工学报, 2020, 71(S1): 404-410.
[7] 杨晓东, 庞丽萍, 阿嵘, 金亮. 高速飞行器燃油热管理系统飞行热航时[J]. 化工学报, 2020, 71(S1): 425-429.
[8] 张洁, 庞丽萍, 曲洪权, 王天博. 基于随机配置网络的机载电子吊舱多工况热模型[J]. 化工学报, 2020, 71(S1): 441-447.
[9] 李富恒. 石墨烯纳米片-乙二醇纳米流体光热转化特性研究[J]. 化工学报, 2020, 71(S1): 479-485.
[10] 杨东升, 阿嵘, 张建斌, 王大鹏, 张斌, 徐迎丽, 秦俊杰, 刘淑芬. 航天器舱内环境下非金属增材制造热效应分析[J]. 化工学报, 2020, 71(S1): 486-493.
[11] 李攀, 孔慧, 宋卓栋, 张作毅, 王云芳. 甲醇-甲醛-聚甲氧基二甲醚三元体系汽液平衡[J]. 化工学报, 2020, 71(S1): 7-14.
[12] 杨冲, 林旭枫, 张金锋, 陈宏, 肖业鹏, 王慧, 程丽华, 欧阳新平. 正己烷–异丙醇共沸体系液液相平衡数据测定及关联[J]. 化工学报, 2020, 71(7): 3009-3017.
[13] 黄桂冬, 张凇源, 葛众, 解志勇, 相华江, 鄢银连, 袁志鹏. 基于内置换热器有机闪蒸循环的热性能研究[J]. 化工学报, 2020, 71(7): 3080-3090.
[14] 杨辉, 代文豪, 陆荣秀, 朱建勇. 基于分离系数校正的稀土萃取流程模拟[J]. 化工学报, 2020, 71(7): 3180-3190.
[15] 李玉, 徐春明, 韩帅, 李鸿烨. 火灾条件下拱顶油罐弱连接结构的失效分析[J]. 化工学报, 2020, 71(7): 3372-3378.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!