化工学报

• • 上一篇    下一篇

板式换热器Ni-P-TiO2复合纳米镀层微生物污垢特性

刘坐东1, 李斯琪1, 邢维维1, 徐志明1   

  1. 东北电力大学能源与动力工程学院, 吉林 吉林 132012
  • 收稿日期:2020-02-24 修回日期:2020-05-12 出版日期:2023-04-17 发布日期:2020-05-25
  • 通讯作者: 李斯琪(1996-),女,硕士研究生,1178340338@qq.com E-mail:1178340338@qq.com
  • 作者简介:刘坐东(1985-),男,博士,讲师,liuzuodong@neepu.edu.cn
  • 基金资助:
    吉林省科技厅优秀青年基金项目(20180520069JH);吉林省教育厅项目(JJKH20200108KJ)

Characteristics of microbial fouling on Ni-P-(nano) TiO2 composite coating of plate heat exchanger

LIU Zuodong1, LI Siqi1, Xing Weiwei1, XU Zhiming1   

  1. Northeast Electric Power University, College of Energy and Power Engineering, Jilin 132012, Jilin, China
  • Received:2020-02-24 Revised:2020-05-12 Online:2023-04-17 Published:2020-05-25

摘要: 换热器微生物污垢问题普遍存在于能源化工领域,污垢的聚集会导致设备的流动阻力、燃料消耗和维护成本支出大幅度增加。本文采用复合纳米镀层来抑制和减轻换热表面的微生物污垢的附着和沉积。首先采用化学镀的方式,在板式换热器的不锈钢316板上镀覆Ni-P-TiO2复合纳米镀层和对照性的Ni-P镀层。基于板式换热器的微生物污垢在线监测实验系统,通过实验研究了镀覆Ni-P-TiO2复合纳米镀层的板式换热器微生物污垢特性。结果表明,清洁状态下,镀覆两种镀层的板式换热器其摩擦系数(f)和努塞尔数(Nu)相较未镀覆板式换热器均有略微的增加;微生物污垢实验后,相比较未镀覆的板式换热器,镀覆Ni-P镀层的板式换热器污垢热阻减少了8.36%~23.07%,而镀覆Ni-P-TiO2复合纳米镀层的板式换热器污垢热阻减少了16.6%~30.96%;在相同微生物污垢实验工况下,镀覆Ni-P-TiO2复合纳米镀层的板式换热器的摩擦系数(f)相比Ni-P镀层的低2.54%~11.82%,但Nu却明显高于Ni-P镀层达8.47%~9.45%,并且污垢热阻明显小于Ni-P镀层达10.66%~18.18%,镀覆Ni-P-TiO2复合纳米镀层的板式换热器展现了优异的强化传热性能和抑垢性能。

关键词: 复合纳米镀层, 微生物污垢, 板式换热器, 传热传质, 沉积物

Abstract: Microbial fouling problem of heat exchanger is common in the field of energy and chemical industry, and the accumulation of fouling can cause a significant increase in flow resistance, fuel consumption and maintenance costs. In this paper, a nano-composite coating was prepared to reduce the adhesion and deposition of microbial fouling on heat exchange surface. Firstly, the Ni-P-(nano) TiO2 composite coatings and the controlled Ni-P coatings were prepared on stainless steel 316 plates of a plate heat exchanger by using electroless plating. Secondly, based on the heat exchanger microbial fouling on-line monitoring experimental system, the microbial fouling characteristics of plate heat exchangers coated Ni-P-(nano) TiO2 composite coating were investigated experimentally. The results showed that the friction coefficient (f) and Nussel number (Nu) of the two coated plate heat exchangers were a little higher than the uncoated one when it is in cleaning conditions; after the microbial fouling experiment, compared with the uncoated plate heat exchanger, the fouling resistance of Ni-P coated plate heat exchanger was reduced by 8.36%-23.07%, while the other one coated Ni-P-(nano) TiO2 was reduced by 16.6%-30.96%. Under the same microbial fouling experimental conditions, the heat transfer and fouling characteristics of the two coatings were compared and analyzed further. The friction coefficient (f) of plate heat exchanger coated Ni-P-(nano) TiO2 coating was reduced by 2.54%~11.82% compared with the coated Ni-P one, while the Nu number was increased by 8.47%~9.45%, and the fouling resistance was reduced by 10.66%~18.18% correspondingly. The plate heat exchanger coated Ni-P-(nano) TiO2 composite coating showed an excellent microbial fouling inhibition performance in heat mass transfer process.

Key words: composite nanomaterial coating, microbial fouling, plate heat exchanger, heat transfer and mass transfer, deposition

中图分类号: 

  • TK124
[1] 杨善让, 徐志明, 孙灵芳, 等. 换热设备污垢与对策[M]. 2版. 北京:科学出版社, 2004:17. Yang S R, Xu Z M, Sun L F, et al. Fouling and countermeasures of heat exchanger[M]. 2nd ed. Beijing:Science Press, 2004:17.
[2] Yang Q, Wilson D I, Chen X, et al. Experimental investigation of interactions between the temperature field and biofouling in a synthetic treated sewage stream[J]. Biofouling, 2013, 29(5):513-523.
[3] Cao S X, Zhang Y H, Zhang J, et al. Experimental study on dynamic simulation for biofouling resistance prediction by least squares support vector machine[J]. Energy Procedia, 2012, 17(Part A):74-78.
[4] 王洋, 张晓健, 陈雨乔, 等. 给水管网管壁铁细菌生长特性模拟及控制对策研究[J]. 环境科学, 2009, 30(11):3293-3299. Wang Y, Zhang X J, Chen Y Q, et al. Growth characteristics and control of iron bacteria on cast iron in drinking water distribution systems[J]. Environmental Science, 2009, 30(11):3293-3299.
[5] 崔艳雨, 宁丽纳. 飞机油箱用材7075铝合金在积水环境中的微生物腐蚀规律[J]. 材料保护, 2014, 47(12):29-32. Cui Y Y, Ning L N. Microbial corrosion of 7075 aluminum alloy for aircraft fuel tank materials in water environment[J]. Materials Protection, 2014, 47(12):29-32.
[6] 叶春松, 郝洪铎, 王天平, 等. 微生物菌剂处理循环冷却水的作用原理及其工业应用试验[J]. 环境工程, 2019, 37(8):42-46. Ye C S, Hao H D, Wang T P, et al. Principle of recirculating cooling water treated with microbial agents and its industrial test[J]. Environmental Engineering, 2019, 37(8):42-46.
[7] 常思远, 方宇晴, 史琳, 等. Ca~(2+)浓度对再生水源热泵系统中微生物污垢的影响及作用机理[J]. 制冷学报, 2016, 37(06):55-60. Chang S Y, Fang Y Q, Shi L, et al. Effect of Ca~(2+) concentration on microbial fouling in regenerative water source heat pump system and its mechanism[J].Journal of Refrigeration, 2016,37(06):55-60.
[8] 杨帅. 海水板式换热器微生物污垢特性及传热强化的研究[D]. 青岛:中国海洋大学, 2014. Yang S. Study on microbial fouling characteristics and heat transfer enhancement of seawater plate heat exchangers[D]. Qingdao:Ocean University of China, 2014.
[9] 马东. 再生水宽流道板式换热器微生物污垢生长规律及其对传热性能影响的研究[D]. 西安:西安建筑科技大学, 2017. Ma D. Study on the growth law of microbial fouling and its influence on heat transfer performance of the wide-flow plate heat exchanger of recycled water[D]. Xi'an:Xi'an University of Architecture and Technology, 2017.
[10] 王蓉. 微生物污垢仿生换热模型及数值模拟[D]. 哈尔滨:哈尔滨工业大学, 2018. Wang R. Bionic heat transfer model and numerical simulation of microbial fouling[D]. Harbin:Harbin Institute of Technology, 2018.
[11] 王晶. 换热器表面蛋白质污垢的生长与清洗及抑垢研究[D]. 江苏:苏州大学, 2018. Wang J. Study of protein fouling on heat exchanger surface and anti-fouling[D]. Jiangsu:Suzhou University, 2018.
[12] Chen X, Yang Q R, Wang R H, et al. Experimental study of the growth characteristics of microbial fouling on sewage heat exchanger surface[J]. Applied Thermal Engineering, 2018, 128:426-433.
[13] Chandra K, Mahanti A, Singh A P, et al. Microbiologically influenced corrosion of 70/30 cupronickel tubes of a heat-exchanger[J]. Engineering Failure Analysis, 2019, 105:1328-1339.
[14] Li N, Yang Q, Yao E, et al. Synergism between Particulate and Microbial Fouling on a Heat Transfer Surface using Treated Sewage Water[J]. Applied Thermal Engineering, 2019, 105:791-802.
[15] Zouaghi S, Six T, Nuns N, et al. Influence of stainless steel surface properties on whey protein fouling under industrial processing conditions[J]. Journal of Food Engineering, 2018, 228:38-49.
[16] 吕昌旗, 孙玲玲, 王云汉, 等. 换热设备污垢热阻和腐蚀监测技术综述[J]. 现代工业经济和信息化, 2016, 6(6):73-73. Lu C Q, Sun L L, Wang Y H, et al. Review of fouling resistance and corrosion monitoring techniques for heat exchange equipment[J]. Modern Industrial Economy and Information Technology, 2016, 6(6):73-73.
[17] 郭静. 金属材料的表面腐蚀与防护措施分析[J]. 科学技术创新, 2018(21):171-172. Guo J. Analysis of surface corrosion and protective measures of metal materials[J]. Science and Technology Innovation, 2018(21):171-172.
[18] 冯刚. 石油化工行业不锈钢的常见腐蚀分析与涂层防护[J]. 涂层与防护, 2018, 39(08):4-7. Feng G. Corrosion analysis and coating protection for stainless steel in petrochemical industry[J]. Coating and Protection, 2018, 39(08):4-7.
[19] Powell C A. Preventing biofouling with copper-nickel alloys[J]. Mater World, 1994, 2(4):181-183.
[20] 程延海, 朱真才, 韩正铜, 等. 镀层换热表面凝结传热实验研究[J]. 中国电机工程学报, 2010, 30(8):27-31. Cheng Y H, Zhu Z C, Han Zheng T, et al. Experimental study on condensation and heat transfer of coating heat exchange surface[J]. Proceedings of the CSEE, 2010, 30(8):27-31.
[21] Cheng Y H, Zou Y, Cheng L, et al. Effect of the microstructures on the properties of ni-p deposits on heat transfer surface[J]. Surface and Coatings Technology, 2009, 203(12):1559-1564.
[22] 杨倩鹏, 田磊, 常思远, 等. 换热表面镀银抑制微生物污垢综合分析[J]. 工程热物理学报, 2014(2):354-357. Yang Q P, Tian L, Chang S Y, et al. Comprehensive analysis of inhibition of microbial fouling by silver plating on heat exchange surface[J]. Journal of Engineering Thermophysics, 2014(2):354-357.
[23] Huang K, Goddard J M. Influence of fluid milk product composition on fouling and cleaning of ni-ptfe modified stainless steel heat exchanger surfaces[J]. Journal of Food Engineering, 2015(158):22-29.
[24] Zhao Q, Liu C, Su X, et al. Antibacterial characteristics of electroless plating Ni-P-TiO2 coatings[J]. Applied Surface Science, 2013, 274:101-104.
[25] Jindal S, Anand S, Metzger L, et al. Short communication:a comparison of biofilm development on stainless steel and modified-surface plate heat exchangers during a 17-h milk pasteurization run[J]. Journal of dairy science, 2018, 101(4):2921-2926.
[26] Oldani V, Biella S, Bianchi C L, et al. Perfluoropolyethers coatings design for fouling reduction on heat transfer stainless-steel surfaces[J]. Heat Transfer Engineering, 2016, 37:210-219.
[27] Balasubramanian S, Puri V M. Thermal energy savings in pilot-scale plate heat exchanger system during product processing using modified surfaces[J]. Journal of Food Engineering, 2009, 91(4):608-611.
[28] Lukas S, Wolfgang A, Stephan S, et al. Fouling mitigation in food processes by modification of heat transfer surfaces:a review[J]. Food and Bioproducts Processing, 2020, 121:1-19.
[29] 罗敏, 司徒振明. 液体界面张力的测定方法-悬滴法[J]. 材料工程, 1989(2):23-26. Luo M, Situ Z M. Method for measuring liquid interfacial tension-method of hanging-drop[J]. Materials Engineering 1989(2):23-26.
[30] Bellon-Fontaine M N, Rault J, Oss V. Microbial adhesion to solvents:a novel method to determine the electron-donor/electron-acceptor or Lewis acid-base properties of microbial cells[J]. Colloids & Surface B, 1996, 7(1-2):47-53.
[31] 徐志明, 贾玉婷, 王丙林, 等.板式换热器铁细菌生物污垢特性的实验分析[J]. 化工学报, 2014,65(08):3178-3183. Xu Z M, Jia Y T, Wang B L, et al. Experimental analysis on bio-fouling of iron bacteria on plate heat exchanger[J]. Journal of Chemical Industry and Engineering (China), 2014, 65(08):3178-3183.
[32] 张海泉. 板式换热器热工与阻力性能测试及计算方法研究[D]. 哈尔滨:哈尔滨工业大学, 2006. Zhang H Q. Testing and calculate method study on thermal performance and flow pressure drop characteristics of a plate heat exchanger[D]. Harbin:Harbin Institute of Technology, 2006.
[33] Webb R. L. Heat transfer and friction characteristics of internal helical-rib roughness[J]. Journal of Heat Transfer, 2000, 122(1):134-142.
[1] 彭冬根, 徐少华. 蒸发冷却条件下管内LiCl和CaCl2溶液降膜除湿性能对比[J]. 化工学报, 2020, 71(4): 1554-1561.
[2] 李钰冰, 杨茉, 陆廷康, 戴正华. 具有质热源的方腔内对流传热传质及其非线性特性[J]. 化工学报, 2019, 70(S2): 130-137.
[3] 李安军, 陈晓庆, 李健, 黄超, 周振, 卢奇. 两种波纹深度板片传热及阻力特性的对比实验研究[J]. 化工学报, 2019, 70(9): 3377-3384.
[4] 何洋, 王利民, 唐春丽, 车得福. H型翅片管湿烟气对流冷凝传热的数值模拟研究[J]. 化工学报, 2019, 70(12): 4556-4564.
[5] 张海燕, 郭江峰, 淮秀兰, 崔欣莹. PCHE内轴向导热对局部换热性能的影响研究[J]. 化工学报, 2019, 70(12): 4590-4598.
[6] 潘佩媛, 陈衡, 焦健, 梁志远, 赵钦新. 湿法脱硫后烟气腐蚀现场实验研究[J]. 化工学报, 2019, 70(1): 161-169.
[7] 潘璐璐, 吴丹菁, 刘维平. MFC-MEC耦合系统产电性能及处理含镉重金属废水的研究[J]. 化工学报, 2019, 70(1): 242-250.
[8] 李殿鑫, 胡南, 黄超, 丁德馨, 李广悦, 王永东. 富集的硫酸盐还原菌沉积物生物还原地下水中U(Ⅵ)的实验研究[J]. 化工学报, 2018, 69(8): 3619-3625.
[9] 徐志明, 郭元杰, 韩志敏, 赵宇. 丁胞型圆管CaSO4的污垢特性[J]. 化工学报, 2018, 69(4): 1341-1348.
[10] 王东民, 董丽宁, 全晓军. 改性SiO2纳米颗粒沸腾沉积层的形成原理及其沸腾换热[J]. 化工学报, 2018, 69(10): 4200-4205.
[11] 常景彩, 王翔, 王鹏, 崔琳, 李军, 李宗强, 马春元. 纤维水膜极板表面颗粒沉积脱落特性[J]. 化工学报, 2018, 69(10): 4302-4310.
[12] 刘海, 徐存英, 唐杰, 朱啸林, 王祥, 黄梦婷, 华一新, 张启波. ChCl-urea-ZnO-Cu2O低共熔溶剂电镀铜锌合金[J]. 化工学报, 2018, 69(10): 4402-4408.
[13] 王茜, 韩怀志, 李炳熙. 板式换热器波纹通道的流动与传热机理[J]. 化工学报, 2017, 68(S1): 71-82.
[14] 吴学红, 李灿, 龚毅, 张军, 赵敏. 板式换热器相变流动的传热及压降特性[J]. 化工学报, 2017, 68(S1): 133-140.
[15] 肖定军, 赵明宇, 叶绍明, 黎小芳, 王翀. 选择性有机可焊保护剂在印制电路板铜金表面选择性沉积机理[J]. 化工学报, 2017, 68(S1): 232-239.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!