化工学报

• •    

ZSM-5沸石膜用于生物油的脱水分离及其再生过程研究

马珊宏1, 叶枫2, 王燕鸿2, 郎雪梅2, 樊栓狮2, 李刚2   

  1. 1 华南理工大学轻工科学与工程学院, 广东广州 510641;
    2 华南理工大学化学与化工学院, 广东广州 510641
  • 收稿日期:2020-02-15 修回日期:2020-04-16 出版日期:2023-04-17 发布日期:2020-04-17
  • 通讯作者: 李刚(1983-),男,博士,教授,fegli@scut.edu.cn E-mail:fegli@scut.edu.cn
  • 作者简介:马珊宏(1994-),男,硕士研究生,70452121504@qq.com
  • 基金资助:
    国家自然科学基金项目(21506067)

Permeation properties and regeneration of a ZSM-5 zeolite membrane for bio-oil dehydration

MA Shanhong1, YE Feng2, WANG Yanhong2, LANG Xuemei2, FAN Shuanshi2, LI Gang2   

  1. 1 School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China,;
    2 School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
  • Received:2020-02-15 Revised:2020-04-16 Online:2023-04-17 Published:2020-04-17

摘要: 在水热条件下通过无模板剂法合成了连续的ZSM-5沸石膜,并将其用于生物油的渗透汽化以进行高效脱水分离。ZSM-5沸石膜在强酸性、多组分的生物油体系中保持了很好的化学稳定性和优异的分离选择性,但在分离过程中面临着较强的膜污染问题,导致了膜通量的大幅下降。ZSM-5沸石膜的再生研究表明,膜的渗透通量随着再生温度的升高而逐渐提高。当再生温度为220℃时,ZSM-5沸石膜的渗透通量可以恢复至初始的88%。再生的机理研究表明,ZSM-5沸石膜中大量的晶内孔在生物油体系中极易被污染,从而导致渗透通量迅速下降;而相对较大的晶间孔却难以被完全堵塞,水分子在被污染的ZSM-5沸石膜中主要通过晶间孔进行渗透。上述结果表明,通过合理调控ZSM-5沸石膜的晶间孔的数量和尺寸大小可有效提升ZSM-5沸石膜在生物油中的渗透汽化脱水分离性能。

关键词: 沸石, 膜, 分离, 渗透汽化, 生物油

Abstract: A ZSM-5 zeolite membrane was hydrothermally synthesized using a template-free method for bio-oil pervaporation dehydration. The ZSM-5 zeolite membrane showed both excellent chemical stability and selectivity in the highly acidic and multi-component bio-oil system. However, the membrane encountered serious membrane fouling in bio-oil during pervaporation, which resulted in a significant loss in the permeation flux. The membrane regeneration test showed that the permeation flux increased with increasing the regeneration temperature, and the value could be recovered to 88% of the original flux of the fresh ZMS-5 membrane after the membrane was regenerated at 220 ℃. The membrane regeneration mechanism showed that the intracrystalline pores of the ZSM-5 zeolite membrane were easily fouled in the bio-oil system, which was responsible to the rapid decrease of the permeation flux; while the intercrystalline pores with a relatively larger pore size were difficult to be completely blocked, thus the intercrystalline pores functioned as the main channels for water permeation through the fouled ZSM-5 zeolite membrane. The above finding demonstrated that tuning the size and amount of intercrystalline pores in a reasonable range could effectively improve the performance of ZSM-5 zeolite membrane for bio-oil dehydration.

Key words: zeolite, membranes, separation, pervaporation, bio-oil

中图分类号: 

  • TQ028.8
[1] Bu Q, Chen K, Xie W, et al. Hydrocarbon rich bio-oil production, thermal behavior analysis and kinetic study of microwave-assisted co-pyrolysis of microwave-torrefied lignin with low density polyethylene[J]. Bioresource Technology, 2019, 291:121860.
[2] Chen X, Che Q, Li S, et al. Recent developments in lignocellulosic biomass catalytic fast pyrolysis:Strategies for the optimization of bio-oil quality and yield[J]. Fuel Processing Technology, 2019, 196, 106180.
[3] Shafaghat H, Kim J M, Lee I-G, et al. Catalytic hydrodeoxygenation of crude bio-oil in supercritical methanol using supported nickel catalysts[J]. Renewable Energy, 2019, 144:159-166.
[4] Hassan E B, Abou-Yousef H, Steele P. Increasing the efficiency of fast pyrolysis process through sugar yield maximization and separation from aqueous fraction bio-oil[J]. Fuel Processing Technology, 2013, 110:65-72.
[5] Zhang L, Yu Z, Li J, et al. Steam reforming of typical small organics derived from bio-oil:Correlation of their reaction behaviors with molecular structures[J]. Fuel, 2020, 259:116214.
[6] 熊万明,陈金珠,吴东平,等.生物油中有机化合物的分析与表征[J].分析测试学报, 2013, 32(08):1024-1030. Xiong W M, Chen J Z, Wu D P, et al. Progresses on analysis and characterization of organic compounds in bio-oil[J]. Journal of Instrumental Analysis, 2013, 32(08):1024-1030.
[7] Aysu T, Durak H, Guner S, et al. Bio-oil production via catalytic pyrolysis of anchusa azurea:Effects of operating conditions on product yields and chromatographic characterization[J]. Bioresource Technology, 2016, 205:7-14.
[8] Han Y L, Gholizadeh M, Tran C C, et al. Hydrotreatment of pyrolysis bio-oil:A review[J]. Fuel Processing Technology, 2019, 195:106140.
[9] 王华,刘荣厚,张春梅,等.卡尔费休方法测定生物油含水量的试验研究[J].可再生能源, 2005, 3(121):17-20. Wang H, Liu R H, Zhang C M, et al. An experimental study on determination of the water content in bio-oil by Karl-Fischer titration[J]. Renewable Energy, 2005, 3(121):17-20.
[10] 孙玉凤,高虹,王通洲.玉米秸秆生物质热裂解产物分析[J].沈阳理工大学学报, 2010, 29(05):72-76. Sun Y F, Gao H, Wang T Z. Study on biomass pyrolysates of maize stalk[J]. Journal of Shenyang Ligong University, 2010, 29(05):72-76.
[11] 徐莹,王铁军,马隆龙,等.真空热解松木粉制备生物油[J].农业工程学报, 2013, 29(01):196-201. Xu Y, Wang T J, Ma L L, et al. Technology of bio-oil preparation by vacuum pyrolysis of pine straw[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(01):196-201.
[12] Wang S, Go Y, Liu Q, et al. Separation of bio-oil by molecular distillation[J]. Fuel Processing Technology, 2009, 90(5):738-745.
[13] Wang Y, Wang S, Leng F, et al. Separation and characterization of pyrolytic lignins from the heavy fraction of bio-oil by molecular distillation[J]. Separation and Purification Technology, 2015, 152:123-132.
[14] Capunitan J A, Capareda S C. Characterization and separation of corn stover bio-oil by fractional distillation[J]. Fuel, 2013, 112:60-73.
[15] Teella A, Huber G W, Ford D M. Separation of acetic acid from the aqueous fraction of fast pyrolysis bio-oils using nanofiltration and reverse osmosis membranes[J]. Journal of Membrane Science, 2011, 378(1-2):495-502.
[16] Li G, Ma S, Yang H, et al. A graphene oxide membrane with self-regulated nanochannels for the exceptionally stable bio-oil dehydration[J]. AIChE Journal, 2020, 66(1):e16753.
[17] Huang A, Lin Y S, Yang W. Synthesis and properties of A-type zeolite membranes by secondary growth method with vacuum seeding[J]. Journal of Membrane Science, 2004, 245(1-2):41-51.
[18] Cao Y, Li Y, Wang M, et al. High-flux NaA zeolite pervaporation membranes dynamically synthesized on the alumina hollow fiber inner-surface in a continuous flow system[J]. Journal of Membrane Science, 2019, 570:445-454.
[19] Cui Y, Kita H, Okamoto K. Zeolite T membrane:Preparation, characterization, pervaporation of water/organic liquid mixtures and acid stability[J]. Journal of Membrane Science, 2004, 236(1):17-27.
[20] Zhou H, Li Y, Zhu G, et al. Microwave-assisted hydrothermal synthesis of a&b-oriented zeolite T membranes and their pervaporation properties[J]. Separation and Purification Technology, 2009, 65(2):164-172.
[21] Zhou R, Hu L, Zhang Y, et al. Synthesis of oriented zeolite T membranes from clear solutions and their pervaporation properties[J]. Microporous and Mesoporous Materials, 2013, 174:81-89.
[22] Wang X, Chen Y, Zhang C, et al. Preparation and characterization of high-flux T-type zeolite membranes supported on YSZ hollow fibers[J]. Journal of Membrane Science, 2014, 455:294-304.
[23] Lin X, Kita H, Okamoto K. Silicalite membrane preparation, characterization and separation performance[J]. Industrial&Engineering Chemistry Research. 2001, 40(19):4069-4078.
[24] Chen H, Li Y, Zhu G, et al. Synthesis and pervaporation performance of high-reproducibility silicalite-1 membranes[J]. Chinese Science Bulletin. 2008, 53(22):3505-3510.
[25] 金鸽,周志辉,刘红,等.亲水性沸石膜在异丙醇脱水中的应用及其耐酸性研究[J].膜科学与技术, 2014, 34(06):77-83. Jin G, Zhou Z H, Liu H, et al. Application of hydrophilic zeolite membranes in isopropanol dehydration and acid resistance study[J]. Membrane Science and Technology, 2014, 34(06):77-83.
[26] 李良清,李佳佳,张进建,等.渗透汽化异丙醇脱水ZSM-5沸石膜的制备与表征[J].现代化工, 2018, 38(09):136-141. Li L Q, Li J J, Zhang J J, et al. Preparation and characterization of ZSM-5 zeolite membrane for dehydration of isopropanol via pervaporation[J]. Modern Chemical Industry, 2018, 38(09):136-141.
[27] Li X, Kita H, Zhu H, et al. Synthesis of long-term acid-stable zeolite membranes and their potential application to esterification reactions[J]. Journal of Membrane Science, 2009, 339(1-2):224-232.
[28] Zhu M, Kumakiri I, Tanaka K, et al. Dehydration of acetic acid and esterification product by acid-stable ZSM-5 membrane[J]. Microporous and Mesoporous Materials, 2013, 181:47-53.
[29] Li G, Kikuchi E, Matsukata M. A study on the pervaporation of water-acetic acid mixtures through ZSM-5 zeolite membranes[J]. Journal of Membrane Science, 2003, 218(1-2):185-194.
[30] Li L, Yang J, Li J, et al. High performance ZSM-5 membranes on coarse macroporous α-Al2O3 supports for dehydration of alcohols[J]. AIChE Journal, 2016, 62(8):2813-2824.
[31] Zhu M, Lu Z, Kumakiri I, et al. Preparation and characterization of high water perm-selectivity ZSM-5 membrane without organic template[J]. Journal of Membrane Science, 2012, 415:57-65.
[32] Hedlund J, Noack M, Kolsch P, et al. ZSM-5 membranes synthesized without organic templates using a seeding technique[J]. Journal of Membrane Science, 1999, 159(1-2):263-273.
[33] Bettens B, Dekeyzer S, der Bruggen B V, et al. Transport of pure components in pervaporation through a microporous silica membrane[J]. The Journal of Physical Chemistry B, 2005, 109(11):5216-5222.
[34] Xiao J, Wei J. Diffusion mechanism of hydrocarbons in zeolites-I. Theory[J]. Chemical Engineering Science, 1992, 47(5):1123-1141.
[1] 薛爱莲, 周守勇, 蔡健健, 李梅生, 张艳, 赵宜江. 温敏性PVDF/PGS-g-PNIPAM纳米复合超滤膜的制备和性能[J]. 化工学报, 2020, 71(3): 1380-1389.
[2] 黄耀波, 刘佳新, 徐祖华, 赵均, 邵之江. 基于PWA融合模型的注塑过程保压段建模及控制策略[J]. 化工学报, 2020, 71(3): 1103-1110.
[3] 李韵浩, 李艾艾, 杨斌斌, 余俊杰, 王开珍, 周勇, 高从堦. 溶胀嵌入脂肪酸分子制备高脱硼反渗透膜[J]. 化工学报, 2020, 71(3): 1343-1351.
[4] 徐燕青, 李文飞, 吴梦瑶, 沈江南. 用于喷墨印花染料纯化的自组装GO/TiO2复合纳滤膜的制备[J]. 化工学报, 2020, 71(3): 1352-1361.
[5] 任六一, 赵颂, 王志, 燕方正, 刘莹莹, 韩向磊, 王纪孝. 抗污染芳香聚酰胺反渗透膜研究进展[J]. 化工学报, 2020, 71(2): 475-486.
[6] 刘丽雪, 张少峰, 赵长伟, 宝乐尔呼, 俞灵, 王军. β-环糊精为水相单体的复合纳滤膜制备及染料截留性能[J]. 化工学报, 2020, 71(2): 889-898.
[7] 吴涵, 陈滢, 刘敏, 王淑莹, 张伟. SBBR反应器中耐冷微生物的驯化与识别[J]. 化工学报, 2020, 71(2): 766-776.
[8] 高思鸿, 刘堉学, 范怡平, 卢春喜. 新型旋流场-颗粒床耦合分离设备静压分布[J]. 化工学报, 2020, 71(2): 516-525.
[9] 方乘, 杨盛, 吴云, 张宏伟, 王捷, 王鲁天, 郝松泽. 絮体表面形态对膜污染预测的影响[J]. 化工学报, 2020, 71(2): 715-723.
[10] 李嘉辰, 俞斌, 王琦, 张丽. 分子模拟研究壳聚糖-氮化硼纳米管封装及输运阿霉素[J]. 化工学报, 2020, 71(1): 354-360.
[11] 杨凯, 阮雪华, 代岩, 王佳铭, 贺高红. 氨基MIL-101(Cr)强化CO2分离性能的混合基质膜优化制备[J]. 化工学报, 2020, 71(1): 329-336.
[12] 崔国凯,吕书贞,王键吉. 功能化离子液体在二氧化碳吸收分离中的应用[J]. 化工学报, 2020, 71(1): 16-25.
[13] 张鹏,陈赞,吴洪,张润楠,杨磊鑫,游昕达,安珂,姜忠义. 石墨烯基CO2分离膜通道微环境调控研究进展[J]. 化工学报, 2020, 71(1): 54-67.
[14] 常苗, 刘磊, 阳庆元, 刘大欢, 仲崇立. 水热稳定金属-有机骨架材料用于高效分离SF6/N2混合物的研究[J]. 化工学报, 2020, 71(1): 320-328.
[15] 刘佳佳, 付雪, 许映杰. 离子液体吸收分离一氧化碳的研究进展[J]. 化工学报, 2020, 71(1): 138-147.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!