化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 77-82.doi: 10.11949/0438-1157.20200127

• 流体力学与传递现象 • 上一篇    下一篇

飞行器机载精密仪器温控系统性能的实验研究

李阳1(),常守金1,胡海涛1(),孙浩然1,赖展程1,刘善敏2   

  1. 1.上海交通大学制冷与低温工程研究所,上海 200240
    2.上海微小卫星工程中心,上海 201203
  • 收稿日期:2020-02-11 修回日期:2020-02-18 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 胡海涛 E-mail:LiYang2017@sjtu.edu.cn;huhaitao2001@sjtu.edu.cn
  • 作者简介:李阳(1995—),男,硕士研究生,LiYang2017@sjtu.edu.cn
  • 基金资助:
    上海市“科技创新行动计划”(19142203000);航天一院高校联合创新基金项目(CALT201803)

Experimental investigation on performance of temperature control system for aircraft precision instrument

Yang LI1(),Shoujin CHANG1,Haitao HU1(),Haoran SUN1,Zhancheng LAI1,Shanmin LIU2   

  1. 1.Institute of Refrigeration and Cryogenics Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    2.Shanghai Microsatellite Engineering Center, Shanghai 201203, China
  • Received:2020-02-11 Revised:2020-02-18 Online:2020-04-25 Published:2020-05-22
  • Contact: Haitao HU E-mail:LiYang2017@sjtu.edu.cn;huhaitao2001@sjtu.edu.cn

摘要:

为提高飞行器机载精密仪器的性能,设计了一种基于被动散热与主动控温的温控系统。该系统采用热管和辐射涂层作为被动散热装置将仪器内热量传出,再利用半导体制冷器和保温层进行第一级控温,并利用电加热装置进行第二级控温,最后设计控制逻辑进行控温。搭建了验证实验台,测试了不同工况下温控系统的温控精度。结果表明,在不同环境温度和温控系统设定温度工况下,该温控系统的温控精度均在±0.1℃以内。

关键词: 飞行器, 传热, 辐射, 半导体制冷器, 温控, 实验验证

Abstract:

To improve the performance of aircraft precision instrument, a temperature control system with passive heat dissipation and active temperature control was designed. In the system, the heat pipe and radiation coating were used as passive radiator to transfer the heat from the instrument. The first stage temperature control was established by semiconductor cooler and insulation layer, and the second stage temperature control was established by electric heating device. The control logic was designed to control temperature. A verification test platform was built, and the temperature control accuracy of the temperature control system under different operating conditions was tested. The result shows that the temperature control accuracy of the system is within ±0.1℃ under the conditions of different environmental temperatures and system setting temperatures.

Key words: aircraft, heat transfer, radiation, semiconductor cooler, temperature control, experimental validation

中图分类号: 

  • TK 124

图1

温控系统示意图1—敏感元件;2—电加热温控装置;3—发热元件;4—热管;5—多级结构;6—保温层;7—半导体制冷片及热沉结构"

图2

控制逻辑框图"

图3

温控系统实验台"

图4

温控装置对敏感元件温度的影响"

图5

不同工况下敏感元件温度变化趋势"

1 康开华, 才满瑞. 欧洲过渡性实验飞行器项目[J]. 导弹与航天运载技术, 2012, (4): 58-62.
Kang K H, Cai M R. European intermediate experimental vehicle project[J]. Missiles and Space Vehicles, 2012, (4): 58-62.
2 王国栋. 惯性/卫星组合导航系统综述[J]. 科技视界, 2019, (21): 115-117.
Wang G D. Research progress of inertial / satellite integrated navigation system[J]. Science & Technology Vision, 2019, (21): 115-117.
3 Zhashitov V E D, Pankratov V M. Using the method of elementary balances for analysis and synthesis of thermal control system for FOG SINS based on Peltier modules[J]. Gyroscopy and Navigation, 2014, 5(4): 245-256.
4 Mason W, Wedekind D. Prediction and measurement of strapdown inertial measurement unit performance on lunar missions[C]//The AIAA Guidance, Control and Flight Mechanics Conference. 2013, 49(439): 136-139.
5 Niu X J, Li Y, Zhang H P, et al. Fast thermal calibration of low-grade inertial sensors and inertial measurement units[J]. Sensors, 2013, 13(9): 12192-12217.
6 Dzhashitov V E, Pankratov V M. Control of temperature fields of a strapdown inertial navigation system based on fiber optic gyroscopes[J]. Journal of Computer and Systems Sciences International, 2014, 53(4): 565-575.
7 Lefèvre H C. The fiber-optic gyroscope: achievement and perspective[J]. Gyroscopy and Navigation, 2012, 3(4): 223-226.
8 张鹏飞, 龙兴武. 机抖激光陀螺捷联系统中惯性器件的温度补偿的研究[J]. 宇航学报, 2006, 27(3): 522-526.
Zhang P F, Long X W. Research on temperature compensation model of inertial sensor in mechanically dithered RLG’s SINS[J]. Astronaut, 2006, 27(3): 522-526.
9 刘元元, 杨功流, 尹洪亮. 基于双模型的光纤陀螺温度补偿方法[J]. 中国惯性技术学报, 2015, 23(1): 131-136.
Liu Y Y, Yang G L, Yin H L. Temperature compensation for fiber optic gyroscope based on dual models[J]. Journal of Chinese Inertial Technology, 2015, 23(1): 131-136.
10 刘元元, 杨功流, 李思宜. BP-Bagging模型再光纤陀螺温度补偿中的应用[J]. 中国惯性技术学报, 2014, 22(2): 254-259.
Liu Y Y, Yang G L, Li S Y. Application of BP-Bagging model in temperature compensation for fiber optic gyroscope[J]. Journal of Chinese Inertial Technology, 2014, 22(2): 254-259.
11 Jadav K, Panchal M. Optimizing weights of artificial neural networks using genetic algorithms[J]. International Journal of Advanced Research in Computer Science and Electronics Engineering, 2012, 1(10): 47-51.
12 程煜明, 张炎华. 光纤陀螺非线性温度漂移模型的辨识[J]. 上海交通大学学报, 1997, 31(12): 123-125, 129.
Cheng Y M, Zhang Y H. Novel optimal designation methodology of ship SINS initial alignment[J]. Journal of Shanghai Jiao Tong University, 1997, 31(12): 123-125, 129.
13 周琪, 秦永元, 赵长山. 光纤陀螺温度漂移误差的模糊补偿方案研究[J]. 传感技术学报, 2010, 23(7): 926-930.
Zhou Q, Qin Y Y, Zhao C S. Research on fuzzy compensation method of temperature drift for fiber optical gyro[J]. Chinese Journal of Sensors and Actuators, 2010, 23(7): 926-930.
14 钱峰, 田蔚风, 杨艳娟, 等. 基于受控马氏链的干涉型光纤陀螺温度漂移模型[J]. 光电子·激光, 2003, 14(7): 705-708.
Qian F, Tian W F, Yang Y J, et al. A model on temperature drift of interference fiber optical gyros based on controlled Markov chain[J]. Journal of Optoelectronics· Laser, 2003, 14(7): 705-708.
15 Becker D, Nielsen J E, Diogo A S, et al. Drift reduction in strapdown airborne gravimetry using a simple thermal correction[J]. Journal of Geodesy, 2015, 89(11): 1133-1144.
16 Zhashitov V E D, Pankratov V M. Hierarchical thermal models of FOG-based strapdown inertial navigation system[J]. Gyroscopy and Navigation, 2014, 5(3): 162-173.
17 Dranitsyna E V, Egorov D A, Untilov A A, et al. Reducing the effect of temperature variations on FOG output signal[J]. Gyroscopy and Navigation, 2013, 4(2): 92-98.
18 Vapnik V. The Nature of Statistical Learning Theory[M]. New York: Wiley, 1998: 24-29.
19 Cao J L, Wang M H, Cai S K, et al. Optimized design of the SGA-WZ strapdown airborne gravimeter temperature control system[J]. Sensors, 2015, 15(12): 29984-29996.
20 Golikov A V, Pankratov V M. Analysis of temperature fields in angular velocity measurement units on fiber-optic gyros[J]. Gyroscopy and Navigation, 2018, 9(2): 116-123.
21 王怀光, 范红波, 任国全, 等. 基于增量式PID控制的半导体制冷温控系统[J]. 现代制造工程, 2013, (11): 110-113.
Wang H G, Fan H B, Ren G Q, et al. The semiconductor refrigerator temperature control system based on increasing PID controlling method[J]. Modern Manufacturing Engineering, 2013, (11): 110-113.
22 向前. 某型号激光捷联惯组温控温补系统设计[D]. 长沙: 国防科学技术大学, 2010.
Xiang Q. The temperature control and compensation system for the certain laser gyro strapdown inertial measurement unit[D]. Changsha: National University of Defense Technology, 2010.
23 Zhang R P. Unsteady heat transfer performance of heat pipe with axially swallow-tailed microgrooves[J]. IOP Conference Series Earth and Environmental Science, 2017, 61(1): 012003.
24 韩玉. 航空电子设备用热管研究[D]. 南京: 南京航空航天大学, 2005.
Han Y. Investigation on application of a flat-plate heat pipe to cooling aeronautical electronics component[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2005.
25 李玉东. 半导体多级制冷性能组合优化设计[D]. 上海: 同济大学, 2007.
Li Y D. Combined optimal design on performance of multi-stage semiconductor cooling[D]. Shanghai: Tongji University, 2007.
26 吴雷, 高明, 张涛, 等. 热电制冷的应用与优化综述[J]. 制冷学报, 2019, 40(6): 1-12.
Wu L, Gao M, Zhang T, et al. Thermoelectric cooling application and optimization: a review[J]. Journal of Refrigeration, 2019, 40(6): 1-12.
27 李爱博. 单级半导体制冷器制冷特性分析及研究[D]. 武汉: 华中科技大学, 2011.
Li A B. Analysis and study on cooling performance of single-stage thermoelectric cooling devices[D]. Wuhan: Huazhong University of Science and Technology, 2011.
28 王芳. 保温材料热导率影响因素试验研究[J]. 上海纺织科技, 2019, 47(6): 36-38.
Wang F. Influencing factors of thermal conductivity of thermal insulation materials[J]. Shanghai Textile Science & Technology, 2019, 47(6): 36-38.
29 尹雨晨, 雷辉, 曾一兵, 等. 绝缘高辐射散热涂层配方设计及性能研究[J]. 涂料工业, 2016, 46(7): 7-11.
Yin Y C, Lei H, Zeng Y B, et al. Formulation design and properties of insulating coating with high radiation and heat dissipation[J]. Paint & Coatings Industry, 2016, 46(7): 7-11.
30 刘志锴. 钛合金表面含铝复合氧化物涂层制备及其辐射防热性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
Liu Z K. Preparation and radiation ability of aluminum contained composite oxides coatings on titanium alloys[D]. Harbin: Harbin Institute of Technology, 2018.
[1] 刘子初, 全贞花, 赵耀华, 靖赫然, 姚孟良, 刘新. 新型微通道平板热管蓄冰性能[J]. 化工学报, 2020, 71(S1): 120-128.
[2] 李鑫郡, 陈玮玮, 鹿世化. 横流环境中压电风扇耦合射流流动换热特性[J]. 化工学报, 2020, 71(S1): 149-157.
[3] 孙苏芮, 王德昌, 张金翠, 刘振, 李延辉. 膜蓄能器放能过程的传热传质特性分析[J]. 化工学报, 2020, 71(S1): 158-165.
[4] 张行, 庞丽萍, 王莹. 某型运输机飞行状态下冷凝器风道性能[J]. 化工学报, 2020, 71(S1): 166-171.
[5] 汪宁, 张学军, 赵阳, 甘智华, 张春伟, 余萌. 基于斯特林制冷机的文物恒湿展柜设计及实验研究[J]. 化工学报, 2020, 71(S1): 179-186.
[6] 陈玮玮, 方贤德, 鹿世化, 林福建, 张烨. 飞行器燃料再生冷却热管理系统参数设计[J]. 化工学报, 2020, 71(S1): 204-211.
[7] 王瑞琪, 高赞军, 杨华, 胡文超, 詹宏波. 机载冷源参数对蒸发循环系统性能的影响[J]. 化工学报, 2020, 71(S1): 212-219.
[8] 常健佩, 黄翔, 安苗苗, 李朝阳. 蒸发冷却冷水机组的原理、性能与适用性分析[J]. 化工学报, 2020, 71(S1): 236-244.
[9] 张庭玮, 李斌, 翟晓强. 基于理论的传热结构拓扑优化[J]. 化工学报, 2020, 71(S1): 31-37.
[10] 阿嵘, 庞丽萍, 杨东升, 齐玢. 高速飞行器机载综合热管理系统设计与优化[J]. 化工学报, 2020, 71(S1): 315-321.
[11] 张晨宇, 王宁, 徐洪涛, 张剑飞, 曹萌. 基于相变材料的太阳能PV/T系统性能[J]. 化工学报, 2020, 71(S1): 361-367.
[12] 郭良, 李恒, 庞丽萍, 毛晓东, 赵竞全, 杨晓东. 高速运载器发电/制冷联合系统稳态性能[J]. 化工学报, 2020, 71(S1): 391-396.
[13] 王栋, 刘雅如, 陈卓, 寇遵丽, 鲁月红. 充注量对小型CO2水源热泵热水器性能的影响及其最佳值的确定[J]. 化工学报, 2020, 71(S1): 397-403.
[14] 郭栋才, 盛强, 杨鹏, 徐捷, 王泽, 杨波, 曹娇坤. 基于热电效应的高效环控系统[J]. 化工学报, 2020, 71(S1): 404-410.
[15] 杨晓东, 庞丽萍, 阿嵘, 金亮. 高速飞行器燃油热管理系统飞行热航时[J]. 化工学报, 2020, 71(S1): 425-429.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .