化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 220-226.doi: 10.11949/0438-1157.20200113

• 流体力学与传递现象 • 上一篇    下一篇

基于纳米增强相变材料的铜-水热管传热性能分析

田东民1(),吴延鹏1(),陈凤君2   

  1. 1.北京科技大学土木与资源工程学院,北京 100083
    2.北京中创绿色系统科技有限公司,北京 100024
  • 收稿日期:2020-02-03 修回日期:2020-02-23 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 吴延鹏 E-mail:632975659@qq.com;wuyanpeng@126.com
  • 作者简介:田东民(1997—),男,硕士研究生,632975659@qq.com
  • 基金资助:
    北京市自然科学基金项目(8202034)

Analysis of heat transfer performance of copper-water heat pipe based on nano enhanced-PCM

Dongmin TIAN1(),Yanpeng WU1(),Fengjun CHEN2   

  1. 1.School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China
    2.Beijing Zhongchuang Green System Technology Co. , Ltd, Beijing 100024, China
  • Received:2020-02-03 Revised:2020-02-23 Online:2020-04-25 Published:2020-05-22
  • Contact: Yanpeng WU E-mail:632975659@qq.com;wuyanpeng@126.com

摘要:

基于磁力搅拌和超声振荡处理工艺制备了含有不同质量分数纳米氧化铝颗粒的月桂酸固体悬浮液,并测试其热导率。利用相变材料与普通热管绝热段的耦合方式,通过测量不同加热模式下热管各部分的温度,对热管的性能进行分析。结果表明:月桂酸包裹在热管绝热段周围时,可有效降低蒸发段的温度。加入适量浓度的金属氧化物纳米颗粒后,其导热能力得到强化。热管的冷却性能随着月桂酸中氧化铝纳米颗粒浓度增长,先增长后降低,质量分数1.0%为最佳浓度。相比纯月桂酸与普通热管的耦合模块,加入1.0%的氧化铝颗粒可降低10%的蒸发段温度,降低60%的风机能耗,可在加热期间存储27%的热能。

关键词: 相变材料, 纳米流体, 热管, 月桂酸, 热导率

Abstract:

In this paper, the solid suspension of lauric acid with different mass fraction of nano-alumina particles was prepared based on magnetic stirring and ultrasonic shock processing, and its thermal conductivity was tested. By means of the coupling between phase change material and the adiabatic section of the ordinary heat pipe, the temperature of each part of the heat pipe under different heating modes was measured, and the performance of the heat pipe was analyzed. The results show that when lauric acid is wrapped around the adiabatic section of the heat pipe, the temperature of evaporation section can be effectively reduced. The thermal conductivity of metal oxide nanoparticles was enhanced by adding appropriate concentration of metal oxide nanoparticles. The cooling performance of the heat pipe increased with the concentration of alumina nanoparticles in lauric acid. With the increase of concentration, the effect increased at first and then decreased. The mass fraction was the optimal concentration of 1.0%. Compared with the coupling module of pure lauric acid and ordinary heat pipe, adding 1.0% alumina particles can reduce the evaporation temperature by 10%, reduce the fan energy consumption up to 60%, and store nearly 27% of the input power during heating.

Key words: phase change material, nanofluids, heat pipe, lauric acid, thermal conductivity

中图分类号: 

  • TK 172.4

图1

PCM热管模块热性能的实验装置示意图和实物图"

图2

不同粒子浓度下月桂酸的热导率"

图3

不同粒子浓度下热管模块蒸发段温度瞬态响应"

图4

不同储能物质蒸发段温度瞬态响应"

图5

热管模块各部分温度"

图6

不同风扇电压下热管蒸发段温度曲线"

表1

不同功率输入下相变材料中存储的能量"

功率输入/W能量/W
纯月桂酸0.5% Al2O31.0% Al2O31.5% Al2O3
164.523.924.614.674.21
204.623.994.824.914.58
1 Wang X F, Sun Z J, Wu C Z, et al. Experimental study on thermosyphon heat sink for cooling of electronic apparatus[J]. Journal of Electron Devices, 2004, 27(3): 393-396.
2 Vasiliev L L. The sorption heat pipe—a new device for thermal control and active cooling[J]. Superlattices and Microstructures, 2003, 35(3): 465-477.
3 Chen B B, Liu W, Liu Z C, et al. Experimental investigation of loop heat pipe with flat evaporator using biporous wick[J]. Applied Thermal Engineering, 2012, 42(42): 34-40.
4 Chang Y W, Cheng C H, Wang J C, et al. Heat pipe for cooling of electronic equipment[J]. Energy Conversion and Management, 2008, 49(11): 3398-3404.
5 Vasiliev L L. Micro and miniature heat pipes—electronic component coolers[J]. Applied Thermal Engineering, 2008, 28(4): 266-273.
6 Zhou G H, Li J, Lv L. An ultra-thin miniature loop heat pipe cooler for mobile electronics[J]. Applied Thermal Engineering, 2016, 109: 514-523.
7 Li J, Wang D, Peterson G P B. A compact loop heat pipe with flat square evaporator for high power chip cooling[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2011, 1(4): 519-527.
8 McGlen R J, Jachuck R, Lin S. Integrated thermal management techniques for high power electronic devices[J]. Applied Thermal Engineering, 2004, 24(8/9): 1143-1156.
9 Faghri A. Heat Pipe Science and Technology[M]. UK: Taylor and Francis, 1995.
10 孙志坚, 何国安, 王立新, 等. 两种电子器件用重力型热管散热器的换热特性[J]. 化工学报, 2006, 57(10): 2283-2288.
Sun Z J, He G A, Wang L X, et al. Heat transfer characteristics of two different thermosyphon radiators for electronic device[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(10): 2283-2288.
11 赵耀华, 王宏燕, 刁彦华, 等. 平板微热管阵列及其传热特性[J]. 化工学报, 2011, 62(2): 336-343.
Zhao Y H, Wang H Y, Diao Y H, et al. Heat transfer characteristics of flat micro-heat pipe array[J]. CIESC Journal, 2011, 62(2): 336-343.
12 李永赞, 胡明辅, 李勇. 热管技术的研究进展及其工程应用[J]. 应用能源技术, 2008, (6): 45-48.
Li Y Z, Hu M F, Li Y. Progress of theoretical research and application investigation on heat pipe technology and its application in engineering [J]. Applied Energy Technology, 2008, (6): 45-48.
13 Weng Y C, Cho H P, Chang C C, et al. Heat pipe with PCM for electronic cooling[J]. Applied Energy, 2011, 88(5): 1825-1833.
14 Behi H, Ghanbarpour M, Behi M. Investigation of PCM-assisted heat pipe for electronic cooling[J]. Applied Thermal Engineering, 2017, 127: 1132-1142.
15 李夔宁, 郭宁宁, 王贺. 改善相变材料导热性能研究综述[J]. 制冷学报, 2008, 29(6): 46-50.
Li K N, Guo N N, Wang H. Review of study on improving conductivity of phase change material[J]. Journal of Refrigeration, 2008, 29(6): 46-50.
16 Lyeo H K, Cahill D G, Lee B S, et al. Thermal conductivity of phase-change material Ge2Sb2Te5[J]. Applied Physics Letters, 2006, 89(15): 151904.
17 Zhang Y P, Jiang Y. A simple method, the-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials[J]. Measurement Science and Technology, 1999, 10(3): 201.
18 Liu Y D, Zhou Y G, Tong M W, et al. Experimental study of thermal conductivity and phase change performance of nanofluids PCMs[J]. Microfluidics and Nanofluidics, 2009, 7(4): 579.
19 Şahan N, Fois M, Paksoy H. Improving thermal conductivity phase change materials—a study of paraffin nanomagnetite composites[J]. Solar Energy Materials and Solar Cells, 2015, 137: 61-67.
20 Chaichan M T, Kamel S H, Al-Ajeely A N M. Thermal conductivity enhancement by using nano-material in phase change material for latent heat thermal energy storage systems[J]. Saussurea, 2015, 5(6): 48-55.
21 Yin H, Gao X, Ding J, et al. Experimental research on heat transfer mechanism of heat sink with composite phase change materials[J]. Energy Conversion and Management, 2008, 49(6): 1740-1746.
22 Arasu A V, Sasmito A P, Mujumdar A S. Numerical performance study of paraffin wax dispersed with alumina in a concentric pipe latent heat storage system[J]. Thermal Science, 2013, 17: 419-430.
23 Wang J, Xie H, Guo Z, et al. Improved thermal properties of paraffin wax by the addition of TiO2 nanoparticles[J]. Applied Thermal Engineering, 2014, 73(2): 1541-1547.
24 Dhaidan N S, Khodadadi J M, Al-Hattab T A, et al. Experimental and numerical investigation of melting of phase change material/nanoparticle suspensions in a square container subjected to a constant heat flux[J]. International Journal of Heat and Mass Transfer, 2013, 66: 672-683.
25 Saha S, Nayak K C, Srinivasan K, et al. Cooling of electronics using phase change materials and thermal conductivity enhancers[C]//18th National & 7th ISHMTASME Heat Mass Transfer Conference. 2006: 4-6.
26 Krishna J, Kishore P S, Solomon A B. Heat pipe with nano enhanced-PCM for electronic cooling application[J]. Experimental Thermal and Fluid Science, 2017, 81: 84-92.
27 Sonawane S S, Khedkar R S, Wasewar K L, et al. Dispersions of CuO nanoparticles in paraffin prepared by ultrasonication: a potential coolant[J]. International Proceedings of Chemical, Biological & Environmental Engineering, 2012, 46: 48.
28 Teng T P, Yu C C. Characteristics of phase-change materials containing oxide nano-additives for thermal storage[J]. Nanoscale Research Letters, 2012, 7(1): 611.
29 钟勋, 俞小莉, 吴俊. 氧化铝有机纳米流体的流动传热基础特性[J]. 化工学报, 2009, 60(1): 35-41.
Zhong X, Yu X L, Wu J. Fluid flow and heat transfer characteristics of alumina organic nanofluid [J]. CIESC Journal, 2009, 60(1): 35-41.
30 Velraj R, Seeniraj R V. Heat transfer studies during solidification of PCM inside an internally finned tube[J]. Journal of Heat Transfer, 1999, 121(2): 493-497.
[1] 刘子初, 全贞花, 赵耀华, 靖赫然, 姚孟良, 刘新. 新型微通道平板热管蓄冰性能[J]. 化工学报, 2020, 71(S1): 120-128.
[2] 阿嵘, 庞丽萍, 杨东升, 齐玢. 高速飞行器机载综合热管理系统设计与优化[J]. 化工学报, 2020, 71(S1): 315-321.
[3] 张晨宇, 王宁, 徐洪涛, 张剑飞, 曹萌. 基于相变材料的太阳能PV/T系统性能[J]. 化工学报, 2020, 71(S1): 361-367.
[4] 杜伯尧, 全贞花, 侯隆澍, 赵耀华, 任海波. 新型光伏直膨式太阳能/空气能多能互补热泵性能[J]. 化工学报, 2020, 71(S1): 368-374.
[5] 杨晓东, 庞丽萍, 阿嵘, 金亮. 高速飞行器燃油热管理系统飞行热航时[J]. 化工学报, 2020, 71(S1): 425-429.
[6] 马德胜, 庞丽萍, 毛晓东, 董素君. 机载综合环控系统的热管理[J]. 化工学报, 2020, 71(S1): 436-440.
[7] 李富恒. 石墨烯纳米片-乙二醇纳米流体光热转化特性研究[J]. 化工学报, 2020, 71(S1): 479-485.
[8] 文爽, 齐宏, 刘少斌, 任亚涛, 阮立明. 基于EKF和UKF算法非均匀介质热物性参数重建[J]. 化工学报, 2020, 71(4): 1432-1439.
[9] 刘明, 徐哲. 甲烷水合物声子导热及量子修正[J]. 化工学报, 2020, 71(4): 1424-1431.
[10] 李庭樑, 岑继文, 黄文博, 曹文炅, 蒋方明. 超长重力热管传热性能实验研究[J]. 化工学报, 2020, 71(3): 997-1008.
[11] 马奕新, 金宇, 张虎, 王娴, 唐桂华. 翅片重力热管传热性能实验研究[J]. 化工学报, 2020, 71(2): 594-601.
[12] 杨生, 邵雪峰, 范利武. 面向中温储热的D-半乳糖醇/肌糖醇二元共晶相变材料热稳定性研究[J]. 化工学报, 2020, 71(2): 864-870.
[13] 蒋二辉, 张东伟, 周俊杰, 沈超, 魏新利. 不同结构下两弯头脉动热管的数值模拟[J]. 化工学报, 2019, 70(S2): 244-249.
[14] 闫秋会,孙晓阳,罗杰任,吴志菊. 玻璃棉/SiO2气凝胶复合板的改性研究[J]. 化工学报, 2019, 70(S2): 363-368.
[15] 于帆,张欣欣. 脉冲式平面热源法测量材料热导率和热扩散率的分析与实验[J]. 化工学报, 2019, 70(S2): 70-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .