化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 220-226.doi: 10.11949/0438-1157.20200113
Dongmin TIAN1(),Yanpeng WU1(
),Fengjun CHEN2
摘要:
基于磁力搅拌和超声振荡处理工艺制备了含有不同质量分数纳米氧化铝颗粒的月桂酸固体悬浮液,并测试其热导率。利用相变材料与普通热管绝热段的耦合方式,通过测量不同加热模式下热管各部分的温度,对热管的性能进行分析。结果表明:月桂酸包裹在热管绝热段周围时,可有效降低蒸发段的温度。加入适量浓度的金属氧化物纳米颗粒后,其导热能力得到强化。热管的冷却性能随着月桂酸中氧化铝纳米颗粒浓度增长,先增长后降低,质量分数1.0%为最佳浓度。相比纯月桂酸与普通热管的耦合模块,加入1.0%的氧化铝颗粒可降低10%的蒸发段温度,降低60%的风机能耗,可在加热期间存储27%的热能。
中图分类号:
1 | Wang X F, Sun Z J, Wu C Z, et al. Experimental study on thermosyphon heat sink for cooling of electronic apparatus[J]. Journal of Electron Devices, 2004, 27(3): 393-396. |
2 | Vasiliev L L. The sorption heat pipe—a new device for thermal control and active cooling[J]. Superlattices and Microstructures, 2003, 35(3): 465-477. |
3 | Chen B B, Liu W, Liu Z C, et al. Experimental investigation of loop heat pipe with flat evaporator using biporous wick[J]. Applied Thermal Engineering, 2012, 42(42): 34-40. |
4 | Chang Y W, Cheng C H, Wang J C, et al. Heat pipe for cooling of electronic equipment[J]. Energy Conversion and Management, 2008, 49(11): 3398-3404. |
5 | Vasiliev L L. Micro and miniature heat pipes—electronic component coolers[J]. Applied Thermal Engineering, 2008, 28(4): 266-273. |
6 | Zhou G H, Li J, Lv L. An ultra-thin miniature loop heat pipe cooler for mobile electronics[J]. Applied Thermal Engineering, 2016, 109: 514-523. |
7 | Li J, Wang D, Peterson G P B. A compact loop heat pipe with flat square evaporator for high power chip cooling[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2011, 1(4): 519-527. |
8 | McGlen R J, Jachuck R, Lin S. Integrated thermal management techniques for high power electronic devices[J]. Applied Thermal Engineering, 2004, 24(8/9): 1143-1156. |
9 | Faghri A. Heat Pipe Science and Technology[M]. UK: Taylor and Francis, 1995. |
10 | 孙志坚, 何国安, 王立新, 等. 两种电子器件用重力型热管散热器的换热特性[J]. 化工学报, 2006, 57(10): 2283-2288. |
Sun Z J, He G A, Wang L X, et al. Heat transfer characteristics of two different thermosyphon radiators for electronic device[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(10): 2283-2288. | |
11 | 赵耀华, 王宏燕, 刁彦华, 等. 平板微热管阵列及其传热特性[J]. 化工学报, 2011, 62(2): 336-343. |
Zhao Y H, Wang H Y, Diao Y H, et al. Heat transfer characteristics of flat micro-heat pipe array[J]. CIESC Journal, 2011, 62(2): 336-343. | |
12 | 李永赞, 胡明辅, 李勇. 热管技术的研究进展及其工程应用[J]. 应用能源技术, 2008, (6): 45-48. |
Li Y Z, Hu M F, Li Y. Progress of theoretical research and application investigation on heat pipe technology and its application in engineering [J]. Applied Energy Technology, 2008, (6): 45-48. | |
13 | Weng Y C, Cho H P, Chang C C, et al. Heat pipe with PCM for electronic cooling[J]. Applied Energy, 2011, 88(5): 1825-1833. |
14 | Behi H, Ghanbarpour M, Behi M. Investigation of PCM-assisted heat pipe for electronic cooling[J]. Applied Thermal Engineering, 2017, 127: 1132-1142. |
15 | 李夔宁, 郭宁宁, 王贺. 改善相变材料导热性能研究综述[J]. 制冷学报, 2008, 29(6): 46-50. |
Li K N, Guo N N, Wang H. Review of study on improving conductivity of phase change material[J]. Journal of Refrigeration, 2008, 29(6): 46-50. | |
16 | Lyeo H K, Cahill D G, Lee B S, et al. Thermal conductivity of phase-change material Ge2Sb2Te5[J]. Applied Physics Letters, 2006, 89(15): 151904. |
17 | Zhang Y P, Jiang Y. A simple method, the-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials[J]. Measurement Science and Technology, 1999, 10(3): 201. |
18 | Liu Y D, Zhou Y G, Tong M W, et al. Experimental study of thermal conductivity and phase change performance of nanofluids PCMs[J]. Microfluidics and Nanofluidics, 2009, 7(4): 579. |
19 | Şahan N, Fois M, Paksoy H. Improving thermal conductivity phase change materials—a study of paraffin nanomagnetite composites[J]. Solar Energy Materials and Solar Cells, 2015, 137: 61-67. |
20 | Chaichan M T, Kamel S H, Al-Ajeely A N M. Thermal conductivity enhancement by using nano-material in phase change material for latent heat thermal energy storage systems[J]. Saussurea, 2015, 5(6): 48-55. |
21 | Yin H, Gao X, Ding J, et al. Experimental research on heat transfer mechanism of heat sink with composite phase change materials[J]. Energy Conversion and Management, 2008, 49(6): 1740-1746. |
22 | Arasu A V, Sasmito A P, Mujumdar A S. Numerical performance study of paraffin wax dispersed with alumina in a concentric pipe latent heat storage system[J]. Thermal Science, 2013, 17: 419-430. |
23 | Wang J, Xie H, Guo Z, et al. Improved thermal properties of paraffin wax by the addition of TiO2 nanoparticles[J]. Applied Thermal Engineering, 2014, 73(2): 1541-1547. |
24 | Dhaidan N S, Khodadadi J M, Al-Hattab T A, et al. Experimental and numerical investigation of melting of phase change material/nanoparticle suspensions in a square container subjected to a constant heat flux[J]. International Journal of Heat and Mass Transfer, 2013, 66: 672-683. |
25 | Saha S, Nayak K C, Srinivasan K, et al. Cooling of electronics using phase change materials and thermal conductivity enhancers[C]//18th National & 7th ISHMTASME Heat Mass Transfer Conference. 2006: 4-6. |
26 | Krishna J, Kishore P S, Solomon A B. Heat pipe with nano enhanced-PCM for electronic cooling application[J]. Experimental Thermal and Fluid Science, 2017, 81: 84-92. |
27 | Sonawane S S, Khedkar R S, Wasewar K L, et al. Dispersions of CuO nanoparticles in paraffin prepared by ultrasonication: a potential coolant[J]. International Proceedings of Chemical, Biological & Environmental Engineering, 2012, 46: 48. |
28 | Teng T P, Yu C C. Characteristics of phase-change materials containing oxide nano-additives for thermal storage[J]. Nanoscale Research Letters, 2012, 7(1): 611. |
29 | 钟勋, 俞小莉, 吴俊. 氧化铝有机纳米流体的流动传热基础特性[J]. 化工学报, 2009, 60(1): 35-41. |
Zhong X, Yu X L, Wu J. Fluid flow and heat transfer characteristics of alumina organic nanofluid [J]. CIESC Journal, 2009, 60(1): 35-41. | |
30 | Velraj R, Seeniraj R V. Heat transfer studies during solidification of PCM inside an internally finned tube[J]. Journal of Heat Transfer, 1999, 121(2): 493-497. |
[1] | 刘子初, 全贞花, 赵耀华, 靖赫然, 姚孟良, 刘新. 新型微通道平板热管蓄冰性能[J]. 化工学报, 2020, 71(S1): 120-128. |
[2] | 阿嵘, 庞丽萍, 杨东升, 齐玢. 高速飞行器机载综合热管理系统设计与优化[J]. 化工学报, 2020, 71(S1): 315-321. |
[3] | 张晨宇, 王宁, 徐洪涛, 张剑飞, 曹萌. 基于相变材料的太阳能PV/T系统性能[J]. 化工学报, 2020, 71(S1): 361-367. |
[4] | 杜伯尧, 全贞花, 侯隆澍, 赵耀华, 任海波. 新型光伏直膨式太阳能/空气能多能互补热泵性能[J]. 化工学报, 2020, 71(S1): 368-374. |
[5] | 杨晓东, 庞丽萍, 阿嵘, 金亮. 高速飞行器燃油热管理系统飞行热航时[J]. 化工学报, 2020, 71(S1): 425-429. |
[6] | 马德胜, 庞丽萍, 毛晓东, 董素君. 机载综合环控系统的热管理[J]. 化工学报, 2020, 71(S1): 436-440. |
[7] | 李富恒. 石墨烯纳米片-乙二醇纳米流体光热转化特性研究[J]. 化工学报, 2020, 71(S1): 479-485. |
[8] | 文爽, 齐宏, 刘少斌, 任亚涛, 阮立明. 基于EKF和UKF算法非均匀介质热物性参数重建[J]. 化工学报, 2020, 71(4): 1432-1439. |
[9] | 刘明, 徐哲. 甲烷水合物声子导热及量子修正[J]. 化工学报, 2020, 71(4): 1424-1431. |
[10] | 李庭樑, 岑继文, 黄文博, 曹文炅, 蒋方明. 超长重力热管传热性能实验研究[J]. 化工学报, 2020, 71(3): 997-1008. |
[11] | 马奕新, 金宇, 张虎, 王娴, 唐桂华. 翅片重力热管传热性能实验研究[J]. 化工学报, 2020, 71(2): 594-601. |
[12] | 杨生, 邵雪峰, 范利武. 面向中温储热的D-半乳糖醇/肌糖醇二元共晶相变材料热稳定性研究[J]. 化工学报, 2020, 71(2): 864-870. |
[13] | 蒋二辉, 张东伟, 周俊杰, 沈超, 魏新利. 不同结构下两弯头脉动热管的数值模拟[J]. 化工学报, 2019, 70(S2): 244-249. |
[14] | 闫秋会,孙晓阳,罗杰任,吴志菊. 玻璃棉/SiO2气凝胶复合板的改性研究[J]. 化工学报, 2019, 70(S2): 363-368. |
[15] | 于帆,张欣欣. 脉冲式平面热源法测量材料热导率和热扩散率的分析与实验[J]. 化工学报, 2019, 70(S2): 70-75. |
|