化工学报 ›› 2020, Vol. 71 ›› Issue (7): 3050-3059.doi: 10.11949/0438-1157.20200085

• 流体力学与传递现象 • 上一篇    下一篇

螺旋折流板换热器质心当量矩形通用计算模型

郑舒星(),朱子龙,陈亚平(),吴嘉峰   

  1. 东南大学能源与环境学院,低碳型建筑环境设备与系统节能教育部工程中心,江苏 南京 210096
  • 收稿日期:2020-01-19 修回日期:2020-04-07 出版日期:2020-07-05 发布日期:2020-04-29
  • 通讯作者: 陈亚平 E-mail:1416254977@qq.com;ypgchen@sina.com
  • 作者简介:郑舒星(1995—),男,硕士研究生,1416254977@qq.com
  • 基金资助:
    国家自然科学基金项目(51776035)

Universal calculation model of mass center equivalent rectangle for helical baffle heat exchangers

Shuxing ZHENG(),Zilong ZHU,Yaping CHEN(),Jiafeng WU   

  1. Engineering Research Center of BEEE, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, Jiangsu, China
  • Received:2020-01-19 Revised:2020-04-07 Online:2020-07-05 Published:2020-04-29
  • Contact: Yaping CHEN E-mail:1416254977@qq.com;ypgchen@sina.com

摘要:

现有螺旋折流板换热器(HBHXs)螺旋通道的截面积是按照通道中被管排阻挡的最小截面计算的,而实际的螺旋通道截面是由最小截面和管间的最大截面共同构成的,螺旋流是逐步通过最小截面的。由于按此最小截面公式计算的Reynolds数不准确,因此无法获得预测Nusselt数和摩擦因子与Reynolds数关系的通用关联式。提出了一种新型质心当量矩形(MCER)模型,以更精确地计算螺旋折流板换热器的螺旋通道的截面积和壳侧流体Reynolds数,并采用商用软件HTRI和文献的实验数据对MCER模型进行了验证,获得了较满意的结果。在相同条件下,按MCER模型计算壳侧Nusselt数Nuo的结果与采用换热器设计软件HTRI所计算结果的误差在-10%~5%范围内,与两组文献实验结果的误差分别在±18%和-5%~15%范围内,但其摩擦因子的公式结果与上述来源结果比较的误差都比较大,需要进一步完善。

关键词: 传热, 模型简化, 实验验证, 螺旋折流板换热器, 质心当量矩形

Abstract:

The existing approach of calculating cross-sectional area of the spiral channel of the helical baffle heat exchanger (HBHX) is according to the minimum cross section of the channel throttled by tube row, while the actual cross section of the spiral channel is composed of both the minimum cross section and the maximum cross section at inter tube space, and the spiral flow does not pass through the minimum cross section instantaneously. Thus the prediction has been in vain of the shell side Nusselt number and friction factor with universal correlations of the Reynolds number for helical baffle heat exchangers because of the incorrect value of Reynolds number. A novel model of mass center equivalent rectangle (MCER) is presented for more accurate calculation of the cross-sectional area of the helical flow channel of the HBHX. The verification of the MCER model is performed with satisfactory results for HBHXs by both the heat exchanger commercial design software HTRI and some experimental results in literatures. Under the same conditions, the error between the Nusselt number Nuo calculated by the MCER model and the result calculated using the heat exchanger design software HTRI is in the range of -10% to 5%, and the errors with the experimental results of the two groups of literature are within the range of ± 18% and -5%—15%, but the error of the friction factor formula results compared with the results of the above sources is relatively large, and needs to be further improved.

Key words: heat transfer, model reduction, experimental validation, helical baffle heat exchangers, mass center equivalent rectangle

中图分类号: 

  • TK 124

图1

螺旋折流板连接方式"

图2

质心当量矩形(MCER)模型示意图"

图4

MCER 模型的实验数据验证(四分螺旋折流板换热器)"

图5

MCER 模型的实验数据验证(三分螺旋折流板换热器)"

1 Lutcha J, Nemcansky J. Performance improvement of tubular heat exchangers by helical baffles[J]. Chemical Engineering Research & Design, 1990, 68(3): 263-270.
2 Salahuddin U, Bilal M, Ejaz H. A review of the advancements made in helical baffles used in shell and tube heat exchangers[J]. International Communications in Heat and Mass Transfer, 2015, 67: 104-108.
3 Movassag Z S, Farhad N T, Kazem R, et al. Tube bundle replacement for segmental and helical shell and tube heat exchangers: Performance comparison and fouling investigation on the shell side[J]. Applied Thermal Engineering, 2013, 51: 1162-1169.
4 Kral D, Stehlík P, van der Ploeg H J, et al. Helical baffles in shell-and-tube heat exchangers, part I: experimental verification[J]. Heat Transfer Engineering, 1996, 17(1): 93-101.
5 Stehlik P, Nemcansky J, Kral D, et al. Comparison of correction factors for shell-and-tube heat exchangers with segmental or helical baffles[J]. Heat Transfer Engineering, 1994, 15(1): 55-65.
6 Stehlík P, Wadekar V V. Different strategies to improve industrial heat exchange[J]. Heat Transfer Engineering, 2002, 23(6): 36-48.
7 陈亚平.适合于正三角形排列布管的螺旋折流板换热器[J]. 石油化工设备, 2008, 37(6): 1-5.
Chen Y P. A novel helix baffled heat exchanger suitable for tube bundle arrangement with equilateral triangles[J]. Petro-Chemical Equipment, 2008, 37(6): 1-5.
8 曹兴, 杜文静, 汲水, 等. 搭接方式对螺旋折流板换热器壳程性能的影响[J].化工学报, 2011, 62(12): 3367-3372.
Cao X, Du W J, Ji S, et al. Effects of baffle connection manner on shell-side performance of heat exchanger with helical baffles[J]. CIESC Journal, 2011, 62(12): 3367-3372.
9 Farhad N T, Movassag Z S, Kazem R, et al. Baffle space impact on the performance of helical baffle shell and tube heat exchangers[J]. Applied Thermal Engineering, 2012, 44(44): 143-149.
10 Wang S M, Wen J, Yang H Z, et al. Experimental investigation on heat transfer enhancement of a heat exchanger with helical baffles through blockage of triangle leakage zones[J]. Applied Thermal Engineering, 2014, 67(1/2): 122-130.
11 Wen J, Yang H Z, Wang S M, et al. Numerical investigation on baffle configuration improvement of the heat exchanger with helical baffles[J]. Energy Conversion and Management, 2015, 89: 438-448.
12 Zhang J F, He Y L, Tao W Q. 3D numerical simulation on shell-and-tube heat exchangers with middle-overlapped helical baffles and continuous baffles( I): Numerical model and results of whole heat exchanger with middle-overlapped helical baffles[J]. International Journal in Heat and Mass Transfer, 2009, 52(23-24): 5371-5380.
13 Chen Y P, Sheng Y J, Wu J F, et al. Numerical simulation on flow field in circumferential overlap trisection helical baffle heat exchanger[J]. Applied Thermal Engineering, 2013, 50(1): 1035-1043.
14 董聪, 陈亚平, 吴嘉峰, 等. 三分螺旋折流板换热器水-水传热壳侧综合性能[J]. 化工学报, 2012, 63(3): 721-727.
Dong C, Chen Y P, Wu J F, et al. Water to water heat transfer on shell-side of trisection helical baffle heat exchangers[J]. CIESC Journal, 2012, 63(3): 721-727.
15 Dong C, Chen Y P, Wu J F. Influence of baffle configurations on flow and heat transfer characteristics of trisection helical baffle heat exchangers[J]. Energy Conversion and Management, 2014, 88: 251-258.
16 Chen Y P, Tang H L, Wu J F, et al. Performance comparison of heat exchangers using sextant/trisection helical baffles and segment ones[J]. Chinese Journal of Chemical Engineering, 2019, 27: 2892-2899.
17 Chen Y P, Wang W H, Wu J F, et al. Experimental investigation on performances of trisection helical baffled heat exchangers for oil/water-water heat transfer[J]. Energy Conversion and Management, 2015, 101: 460-469.
18 Azar R T, Khalilarya S, Jafarmadar S, et al. Modeling for shell-side heat transfer coefficient and pressure drop of helical baffle heat exchangers[J]. Heat Transfer Engineering, 2017, 38(2): 265-277.
19 Zhang J F, Li B, Huang W J, et al. Experimental performance comparison of shell-side heat transfer for shell-and-tube heat exchangers with middle-overlapped helical baffles and segmental baffles[J]. Chemical Engineering Science, 2009, 64: 1643-1653.
20 Tang H L, Chen Y P, Wu J F, et al. Numerical investigation of the performances of axial separation helical baffle heat exchangers[J]. Energy Conversion and Management, 2016, 126: 400-410.
21 Gu H D, Chen Y P, Wu J F, et al. Numerical study on performances of small incline angle helical baffle electric heaters with axial separation[J]. Applied Thermal Engineering, 2017, 126: 963-975.
22 Wang M C, Chen Y P, Wu J F, et al. Heat transfer enhancement of folded helical baffle electric heaters with one-plus-two U-tube units[J]. Applied Thermal Engineering, 2016, 102: 586-595.
23 Dong C, Chen Y P, Wu J F. Comparison of heat transfer performances of helix baffled heat exchangers with different baffle configurations[J]. Chinese Journal of Chemical Engineering, 2015, 23(1): 255-261.
24 Donohue D A. Heat transfer and pressure drop in heat exchangers[J]. Industrial and Engineering Chemistry, 2002, 41(11): 2499-2511.
25 Zhu Z L, Chen Y P, Wu J F, et al. Performance study on s-CO2 power cycle with oxygen fired fuel of s-water gasification of coal[J]. Energy Conversion and Management, 2019, 199: 112058.
26 曹日. 螺旋折流板换热器的研究[D]. 北京:北京化工大学, 2011.
Cao R. Research of Helix baffle heat exchanger[D]. Beijing: Beijing University of Chemical Technology, 2011.
27 Chen Y P, Cao R B, Wu J F, et al. Experimental study on shell side heat transfer performance of circumferential overlap trisection helical baffle heat exchangers[C]//Proceedings of ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE2011-63254.
Denver, Colorado, USA, 2011.
[1] 李阳, 常守金, 胡海涛, 孙浩然, 赖展程, 刘善敏. 飞行器机载精密仪器温控系统性能的实验研究[J]. 化工学报, 2020, 71(S1): 77-82.
[2] 詹宏波, 郑文远, 文涛, 张大林. 微尺度通道内R134a的冷凝传热实验研究[J]. 化工学报, 2020, 71(S1): 83-89.
[3] 刘秀峰, 张诗, 周志杰, 郑浩, 王成泽, 时红远, 李梦杰. 换热器结构优化与换热性能评价指标研究[J]. 化工学报, 2020, 71(S1): 98-105.
[4] 刘子初, 全贞花, 赵耀华, 靖赫然, 姚孟良, 刘新. 新型微通道平板热管蓄冰性能[J]. 化工学报, 2020, 71(S1): 120-128.
[5] 李鑫郡, 陈玮玮, 鹿世化. 横流环境中压电风扇耦合射流流动换热特性[J]. 化工学报, 2020, 71(S1): 149-157.
[6] 孙苏芮, 王德昌, 张金翠, 刘振, 李延辉. 膜蓄能器放能过程的传热传质特性分析[J]. 化工学报, 2020, 71(S1): 158-165.
[7] 张行, 庞丽萍, 王莹. 某型运输机飞行状态下冷凝器风道性能[J]. 化工学报, 2020, 71(S1): 166-171.
[8] 汪宁, 张学军, 赵阳, 甘智华, 张春伟, 余萌. 基于斯特林制冷机的文物恒湿展柜设计及实验研究[J]. 化工学报, 2020, 71(S1): 179-186.
[9] 陈玮玮, 方贤德, 鹿世化, 林福建, 张烨. 飞行器燃料再生冷却热管理系统参数设计[J]. 化工学报, 2020, 71(S1): 204-211.
[10] 王瑞琪, 高赞军, 杨华, 胡文超, 詹宏波. 机载冷源参数对蒸发循环系统性能的影响[J]. 化工学报, 2020, 71(S1): 212-219.
[11] 常健佩, 黄翔, 安苗苗, 李朝阳. 蒸发冷却冷水机组的原理、性能与适用性分析[J]. 化工学报, 2020, 71(S1): 236-244.
[12] 张庭玮, 李斌, 翟晓强. 基于理论的传热结构拓扑优化[J]. 化工学报, 2020, 71(S1): 31-37.
[13] 张晨宇, 王宁, 徐洪涛, 张剑飞, 曹萌. 基于相变材料的太阳能PV/T系统性能[J]. 化工学报, 2020, 71(S1): 361-367.
[14] 郭良, 李恒, 庞丽萍, 毛晓东, 赵竞全, 杨晓东. 高速运载器发电/制冷联合系统稳态性能[J]. 化工学报, 2020, 71(S1): 391-396.
[15] 王栋, 刘雅如, 陈卓, 寇遵丽, 鲁月红. 充注量对小型CO2水源热泵热水器性能的影响及其最佳值的确定[J]. 化工学报, 2020, 71(S1): 397-403.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王安明, 王华, 周成, 杜志强, 祝社民, 沈树宝. Ag-induced Efficient Immobilization of Papain on Silica Spheres[J]. CIESC Journal, 2008, 16(4): 612 -619 .
[2] Bahram Ghalami-Choobar, Ali Ghanadzadeh, Shahram Kousarimehr. Salt Effect on the Liquid-Liquid Equilibrium of(Water+Propionic Acid+Cyclohexanol)System at T=(298.2, 303.2, 308.2)K[J]. CIESC Journal, 2011, 19(4): 565 -569 .
[3] 王普, 苏会贞, 孙立明, 何军邀, 吕亚萍. Asymmetric Bioreduction of 3,5-Bis(trifluoromethyl) Acetophenone to Its Corresponding Alcohol by Candida tropicalis[J]. CIESC Journal, 2011, 19(6): 1028 -1032 .
[4] 陈家镛,夏光祥. 氧化铜与二氧化硫及氧作用生成硫酸铜的动力学 [J]. CIESC Journal, 1965, 16(1): 1 -12 .
[5] 庞桂赐,朱亚杰. 加压流化床中褐煤空气氧化制取腐殖酸的研究 [J]. CIESC Journal, 1966, 17(1): 1 -16 .
[6] 徐振林,汪绍昆,田维民,时钧. 色谱斜率法测过量自由焓模型参数 [J]. CIESC Journal, 1985, 36(2): 141 -150 .
[7] 罗向龙, 华贲. 蒸汽动力系统设计与综合优化研究综述 [J]. 化工学报, 2009, 60(10): 2411 -2419 .
[8] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[9] 蒲秋生,邓正龙,蒋兆贵,苏裕光. 大型合成氨装置一段炉热回收系统的最优综合 [J]. CIESC Journal, 1988, 39(5): 578 -589 .
[10] 张正江, 邵之江. 基于有限测量信息的过程系统参数可估计性分析 [J]. 化工学报, 2011, 62(2): 433 -438 .