化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 261-271.doi: 10.11949/0438-1157.20200067

• 分离工程 • 上一篇    下一篇

单通道陶瓷膜管低压透水性能实验分析

滕达(),李铁林,李昂,安连锁,沈国清(),张世平   

  1. 华北电力大学能源动力与机械工程学院,北京 102206
  • 收稿日期:2020-01-16 修回日期:2020-02-04 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 沈国清 E-mail:tengda8013@163.com;shenguoqing@ncepu.edu.cn
  • 作者简介:滕达(1974—),男,博士研究生,tengda8013@163.com
  • 基金资助:
    国家重点研发计划项目(2018YFB0604305-05);中央高校重大项目(JB2017001)

Experimental analysis of low pressure water permeability of single channel ceramic membrane tube

Da TENG(),Tielin LI,Ang LI,Liansuo AN,Guoqing SHEN(),Shiping ZHANG   

  1. School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
  • Received:2020-01-16 Revised:2020-02-04 Online:2020-04-25 Published:2020-05-22
  • Contact: Guoqing SHEN E-mail:tengda8013@163.com;shenguoqing@ncepu.edu.cn

摘要:

无机陶瓷膜作为多孔介质具有分离效率高、耐酸、耐碱等优点,被视为在海水淡化、废水处理、气体分离等领域的研究热点。采用Al2O3管式单通道陶瓷膜材料构建膜组件,以燃煤电厂自来水、烟气冷凝水、脱硫废水三种不同水质为例,开展低跨膜压差下的膜组件透水性能实验,研究了膜参数、跨膜压差及水体温度等因素对渗透通量、渗透水质的影响,并对引发膜污染的机理过程进行了探讨分析。实验结果表明:陶瓷膜管的结构参数是关键因素,如孔隙率、孔径及厚度等;低跨膜压差下的渗透通量随压力增大呈线性提高,并未发现浓差极化现象,水体温度变化通过改变黏度进而影响渗透通量,同时水质较差时会导致渗透通量降低;陶瓷膜管的孔径是影响渗透水质的核心要素,微滤与纳滤膜对改善悬浮物含量、浊度及色度效果明显,不同孔径对盐度、电导率影响不同;从SEM图可以看出,污染物在膜表面或膜内部发生的沉积、架桥等现象导致严重的膜污染。充分认识影响陶瓷膜管渗透特性的关键因素及污染物的作用机理,对提高无机陶瓷膜的应用前景具有重要意义。

关键词: 多孔介质, 陶瓷膜管, 渗透特性, 水质, 膜污染

Abstract:

As a porous medium, inorganic ceramic membrane has the advantages of high separation efficiency, acid resistance and alkali resistance. It is regarded as a research hotspot in the fields of seawater desalination, wastewater treatment and gas separation. In this paper, Al2O3 tubular single channel ceramic membrane material is used to construct membrane module. Taking tap water, flue gas condensate and desulfurization wastewater of coal-fired power plant as examples, the permeability experiment of membrane module under low transmembrane pressure difference is carried out. The influence of membrane structure parameters, transmembrane pressure difference and water temperature on permeate flux and permeate water quality is studied, and the mechanism process of membrane pollution is also discussed and analyzed. The experimental results show that the structural parameters of the ceramic membrane tube are the key factors, the permeability flux increases linearly with the increase of pressure under the low transmembrane pressure difference, and the concentration polarization phenomenon is not found. The change of water temperature affects the permeability flux by changing the viscosity, and the permeability flux decreases when the water quality is poor, the pore diameter of the ceramic membrane tube affects the permeability flux. As the core element of permeable water quality, microfiltration and nanofiltration membrane have obvious effect on improving the content, turbidity and chroma of suspended solids, but have little effect on the salinity and conductivity. From SEM, it can be seen that the deposition and bridging of pollutants on the surface or inside of membrane will lead to serious membrane pollution. It is of great significance to fully understand the key factors affecting the permeability of ceramic membrane tubes and the mechanism of pollutants, so as to improve the technical level of membrane separation.

Key words: porous medium, ceramic membrane tube, permeability characteristics, water quality, membrane fouling

中图分类号: 

  • TB 321

图1

实验系统示意图"

图2

错流过滤方式"

表1

实验水质参数"

ItemUnitTap-water(TW)Flue gas condensation water(FGCW)Desulfurization wastewater(DW)
SSmg·L-100~1013487~112284
NO3-mg·L-1019731~803
Ca2+mg·L-1302011447~1879
Mg2+mg·L-1204103385~3714
Na+mg·L-1459237624~9686
Cl-mg·L-160168916151~17339
pH76.8~6.856.75~6.80
SO42-mg·L-11808008245~8515
CODmg·L-1132423~444

图3

流体温度对渗透通量、渗透系数的影响(1 mD=0.987×10-3 μm2)"

图4

黏度随温度的变化"

图5

跨膜压差对渗透通量、渗透系数的影响"

图6

水质对渗透通量的影响"

图7

陶瓷膜污染前后渗透通量的变化"

图8

1 μm陶瓷膜管污染特性分析"

图9

1 μm陶瓷膜管断面SEM图"

图10

1 μm陶瓷膜管污染后的EDS质谱图"

图11

1 μm陶瓷膜管表面SEM图"

图12

电导率、盐度的变化情况"

图13

悬浮物、浊度及色度的变化情况"

图14

50 nm陶瓷膜管过滤前后水样"

1 Fu J, Ji M, Wang Z, et al. A new submerged membrane photocatalysis reactor (SMPR) for fulvic acid removal using a nano-structured photocatalyst[J]. Journal of Hazardous Materials, 2006, 131(1/2/3): 238-242.
2 Gan Q. Design and operation of an integrated membrane reactor for enzymatic cellulose hydrolysis[J]. Biochemical Engineering Journal, 2002, 12(2): 223-229.
3 Shim J K, Yoo I K, Lee Y M. Design and operation considerations for wastewater treatment using a flat submerged membrane bioreactor[J]. Process Biochemistry, 2002, 38(2): 279-285.
4 Ghaffour N, Missimer T M, Amy G L. Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability[J]. Desalination, 2013, 309(2): 197-207.
5 宁艳春, 段巧丽, 王兆花, 等. 膜分离技术在废水处理方面的应用与进展[J]. 化工进展, 2011(S1): 828-830.
Ning Y C, Duan Q L, Wang Z H, et al. Application and progress of membrane separation technology in wastewater treatment [J]. Chemical Industry and Engineering Progress, 2011(S1): 828-830.
6 Chung T S, Zhang S, Wang K Y, et al. Forward osmosis processes: yesterday, today and tomorrow[J]. Desalination, 2012, 287(15): 78-81.
7 王瑛, 李梦, 李文娟. 无机陶瓷膜法处理乳化液废水[J]. 低温建筑技术, 2010, 32(12): 3-5.
Wang Y, Li M, Li W J. Treatment of emulsified wastewater with inorganic ceramic membrane[J]. Low Temperature Architecture Technology, 2010, 32(12): 3-5.
8 魏新渝, 王志, 王纪孝, 等. 纳滤深度处理抗生素制药废水膜污染及其控制研究[J]. 膜科学与技术, 2009, 29(4): 91-97.
Wei X Y, Wang Z, Wang J X, et al. Membrane fouling and its control in advance treatment of antibiotic pharmaceutical wastewater with nano filtration[J]. Membrane Science and Technology, 2009, 29(4): 91-97.
9 田蒙奎, 尚百伟, 陶文亮. 光催化高级氧化与无机陶瓷膜分离技术耦合的研究[J]. 环境污染与防治, 2012, 34(11): 40-44.
Tian M K, Shang B W, Tao W L. Study on the coupling of photocatalytic advance oxidation process with inorganic membrane separation technology[J]. Environmental Pollution & Control, 2012, 34(11): 40-44.
10 Hyun S H, Kim G T. Synthesis of ceramic microfiltration membranes for oil/water separation[J]. Sep. Sci. Tech., 1997, 32(18): 2927-2943.
11 Huang Y, Zheng C, Li Qi, et al. Numerical simulation of the simultaneous removal of particulate matter in a wet flue gas desulfurization system[J]. Environmental science and pollution research international, 2020, 27(2): 1598-1607.
12 Yong H, Phani K, Cilai T, et al. Hybrid zero-valent iron process for removing heavy metals and nitrate from flue-gas-desulfurization wastewater[J]. Separation and Purification Technology, 2013, 118(30): 690-698.
13 曲江源, 齐娜娜, 关彦军, 等. 湿法烟气脱硫塔内传递与化学反应过程CFD模拟[J]. 化工学报, 2019, 70(6): 2117-2128.
Qu J Y, Qi N N, Guan Y J, et al. CFD simulation of transfer and chemical reaction process in wet flue gas desulfurization tower[J]. CIESC Journal, 2019, 70(6): 2117-2128.
14 Ma S, Chai J, Wu K, et al. Experimental research on bypass evaporation tower technology for zero liquid discharge of desulfurization wastewater[J]. Environmental Technology, 2019, 40(20): 2715-2725.
15 徐志清, 赵焰, 陆梦楠, 等. 基于膜法的火电厂废水零排放技术研究及应用[J]. 中国电机工程学报, 2019, 39(S1): 148-154.
Xu Z Q, Zhao Y, Lu M N, et al. Study and application on membrane-based wastewater zero liquid discharge technology in a power plant[J]. Proceedings of the CSEE, 2019, 39(S1): 148-154.
16 Enoch G D, Vand B W F, Spiering W. Removal of heavy metals and suspended solids from wastewater from wet lime (stone)—gypson flue gas desulphurization plants by means of hydrophobic and hydrophilic crossflow microfiltration membranes[J]. Journal of Membrane Science, 1994, 87(1/2): 191-198.
17 Vakarelski I U, Ishimura K, Higashitani K. Adhesion between silica particle and mica surfaces in water and electrolyte solutions[J]. Journal of Colloid and Interface Science, 2000, 227(1): 111-118.
18 Yiantsios S G, Karabelas A J. The effect of gravity on the deposition of micron-sized particles on smooth surface[J]. International Journal of Multiphase Flow, 1998, 24(2): 283-293.
19 周卫青, 刘俊峰, 李进. 化学—微滤膜工艺处理烟气脱硫废水的膜污染及解决方法研究[J]. 给水排水, 2007, (S1): 230-232.
Zhou W Q, Liu J F, Li J. Study on membrane pollution and solution of flue gas desulfurization wastewater treatment by chemical microfiltration membrane process[J]. Water & Wastewater Engineering, 2007, (S1): 230-232.
20 Zhong Z, Xing W, Jin W, et al. Adhesion of nano sized nickel catalysts in the nano catalysis/UF system[J]. AIChE Journal, 2007, 53(5): 1204-1210.
21 李静舒, 孙王保. 操作条件对渗透汽化法分离乙醇/水的影响[J]. 山西化工, 2019, 39(5): 13-16.
Li J S, Sun W B. Effect of operating conditions on separation of ethanol/water by pervaporatin[J]. Shanxi Chemical Industry, 2019, 39(5): 13-16.
22 Banat F, Alrub F A, Banimelhem K. Desalination by vacuum membrane distillation: sensitivity analysis[J]. Separation & Purification Technology, 2003, 33(1): 75-87.
23 李恋, 陈志, 杨进飞, 等. 气隙式膜蒸馏在溴化锂吸收式制冷系统中的应用[J]. 化工进展, 202, 39(1): 80-88.
Li L, Chen Z, Yang J F, et al. Application of air-gap membrane distillation in lithium bromide absorption refrigeration system[J]. Chemical Industry and Engineering Progress, 202, 39(1): 80-88.
24 Yu F, Ming H, Yu H, et al. Enhancing the sensitivity of portable biosensors based on self-powered ion concentration polarization and electrical kinetic trapping[J]. Nano Energy, 2020, 69: 104407.
25 王补宣. 工程传热传质学[M]. 北京: 科学出版社, 2015.
Wang B X. Engineering Heat and Mass Transfer[M]. Beijing: Science Press, 2015.
26 邢卫红, 金万勤, 陈日志, 等. 陶瓷膜连续反应器的设计与工程应用[J]. 化工学报, 2010, 61(7): 1666-1672.
Xing W H, Jin W Q, Chen R Z, et al. Design and application of continuous ceramic membrane reactor[J]. CIESC Journal, 2010, 61(7): 1666-1672.
27 Lee S A, Choo K H, Lee C H, et al. Use of ultrafiltration membranes for the separation of TiO2 photocatalysts in drinking water treatment[J]. Industrial & Engineering Chemistry Research, 2001, 40(7): 1712-1719.
28 Chen D, Weavers L K, Walker H W. Ultrasonic control of ceramic membrane fouling by particles: effect of ultrasonic factors[J]. Ultrasonics Sonochemistry, 2006, 13(5): 379-387.
29 叶凌碧, 马延令. 微孔膜的截留作用机理和膜的选用[J]. 净水技术, 1984, (2): 8-12.
Ye L B, Ma Y L. Mechanism of micro porous membrane rejection and selection of membrane[J]. Water Purification Technology, 1984, (2): 8-12.
30 吴火强. 正渗透技术应用于脱硫废水处理的基础研究[D]. 西安: 西安热工研究院, 2017.
Wu H Q. Fundamental research on application of forward osmosis technology in treatment of wastewater of fuel gas desulfurization[D]. Xi an: Xi an Thermal Power Research Institute Co., Ltd., 2017.
[1] 何雪琼, 张会波, 禹国军, 石诚楠. 附加空气层的多层墙体热湿耦合非稳态传递模型及验证[J]. 化工学报, 2020, 71(S1): 114-119.
[2] 贺鹏程, 庄莉, 胡亮, 刘刚, 王瑞琪, 包亚强. 板翅式换热器压力特性工程计算方法[J]. 化工学报, 2020, 71(S1): 172-178.
[3] 方乘, 杨盛, 吴云, 张宏伟, 王捷, 王鲁天, 郝松泽. 絮体表面形态对膜污染预测的影响[J]. 化工学报, 2020, 71(2): 715-723.
[4] 李鹏飞, 孙昕, 杨娌, 何飞飞, 王垿. 藻类叶绿素a提取的优化研究[J]. 化工学报, 2019, 70(9): 3421-3429.
[5] 徐国稳, 李坤, 蒋祎璠, 黄明骏, 房东旭, 蔡姗姗. 三类随机分形结构下干土壤有效热导率的介观研究[J]. 化工学报, 2019, 70(7): 2496-2502.
[6] 吴降麟, 张朝晖, 王亮, 赵斌, 李腾飞, 陈萌萌. 宽流道反渗透膜元件抗污染性能分析[J]. 化工学报, 2019, 70(4): 1446-1454.
[7] 袁子怡, 樊华, 侯得印, 王凯, 王军. 十二烷基硫酸钠对膜蒸馏过程影响[J]. 化工学报, 2019, 70(4): 1455-1463.
[8] 韦攀, 喻家帮, 郭增旭, 杨肖虎, 何雅玲. 环形管填充金属泡沫强化相变蓄热可视化实验[J]. 化工学报, 2019, 70(3): 850-856.
[9] 杨海东, 陈强, 徐康康, 朱成就. 基于数值模拟的马蹄焰玻璃窑蓄热室热效率研究[J]. 化工学报, 2019, 70(12): 4608-4616.
[10] 张承全, 高军, 吕立鹏, 贺廉洁. 单一尺寸圆柱颗粒填充床的阻力特性[J]. 化工学报, 2019, 70(11): 4181-4190.
[11] 凌忠钱, 周超, 曾宪阳, 凌波, 钱炯杰. 多孔介质内低热值乙烯燃烧的污染物排放特性试验研究[J]. 化工学报, 2019, 70(11): 4346-4355.
[12] 郝松泽, 张宏伟, 吴云, 王捷. 双金属催化滤料生物滤池处理效果及对膜污染影响研究[J]. 化工学报, 2019, 70(11): 4377-4386.
[13] 李静岩, 刘中良, 周宇, 李艳霞. CO2羽流地热系统热开采过程热流固耦合模型及数值模拟研究[J]. 化工学报, 2019, 70(1): 72-82.
[14] 胡沛裕, 王树刚, 宋双林, 蒋爽, 梁运涛. 基于完全并行细化算法的孔隙网络中轴提取方法[J]. 化工学报, 2018, 69(S1): 26-33.
[15] 梁林, 刁彦华, 康亚盟, 赵耀华, 魏向前, 陈传奇. 平板微热管阵列-泡沫铜复合结构相变蓄热装置蓄放热特性[J]. 化工学报, 2018, 69(S1): 34-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .