化工学报 ›› 2020, Vol. 71 ›› Issue (7): 3213-3219.doi: 10.11949/0438-1157.20200058

• 表面与界面工程 • 上一篇    下一篇

MMAl在NH2与H混合覆盖的AlN(0001)-Al表面的吸附与扩散研究

孙巍(),左然()   

  1. 江苏大学能源与动力工程学院,江苏 镇江 212013
  • 收稿日期:2020-01-15 修回日期:2020-04-13 出版日期:2020-07-05 发布日期:2020-05-08
  • 通讯作者: 左然 E-mail:2905853506@qq.com;rzuo@ujs.edu.cn
  • 作者简介:孙巍(1993—),男,硕士研究生,2905853506@qq.com
  • 基金资助:
    国家自然科学基金项目(61474058)

Study on the adsorption and diffusion of MMAl on AlN(0001)-Al surface covered with NH2/H

Wei SUN(),Ran ZUO()   

  1. School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
  • Received:2020-01-15 Revised:2020-04-13 Online:2020-07-05 Published:2020-05-08
  • Contact: Ran ZUO E-mail:2905853506@qq.com;rzuo@ujs.edu.cn

摘要:

利用量子化学的密度泛函理论(DFT),对AlN的MOCVD生长中表面反应前体AlCH3(简称MMAl)在NH2和H混合覆盖AlN(0001)-Al面的吸附与扩散进行计算分析。通过分析表面吸附能、扩散能垒及Mulliken数量比例等,确定可能的稳定吸附结构和扩散路径。研究发现:在NH2与H混合覆盖的AlN(0001)-Al面,随着NH2与H的覆盖度变化,MMAl均稳定吸附在T4位和H3位,吸附概率相近。随着NH2比例增多、H比例减少,MMAl吸附后都向AlN表面转移电荷,同时其吸附变得相对容易,扩散变得逐渐困难。与吸附前相比,吸附后MMAl中的Al-C键长缩短,键能增强,不利于CH3的脱离,导致引入C杂质的概率增高,表明MMAl既可能是生长中主要反应物质之一,同时也是引入C杂质的主要来源之一。若AlN表面存在覆盖H,吸附后的MMAl会促使表面覆盖的H原子倾向于脱离AlN表面,有利于后续生长。

关键词: AlN, 密度泛函理论, 吸附, 扩散, 计算化学

Abstract:

Using the density functional theory (DFT) of quantum chemistry, the adsorption and diffusion of the surface reaction precursor AlCH3 (MMAl) on the AlN (0001) -Al surface covered with NH2 and H during MOCVD growth of AlN were calculated and analyzed. By analyzing the surface adsorption energy, diffusion energy barrier, and Mulliken population, etc., the possible stable adsorption structure and diffusion path were determined.The study found that: on the AlN (0001) -Al surface covered with NH2 and H, with the change of the coverage of NH2 and H, MMA1 was stably adsorbed at the T4 and H3 positions with similar adsorption probability.As the proportion of NH2 increases and the proportion of H decreases, MMAl transfers charges to the surface of AlN after adsorption, at the same time its adsorption becomes relatively easy, and diffusion becomes gradually difficult.Compared with before adsorption, the Al-C bond length in MMAl after adsorption is shortened, the bond energy is enhanced, and the detachment of CH3 is not easy, resulting in a higher probability of introducing C impurities.It shows that MMA1 is not only one of the main reactive substances in growth, but also one of the main sources of introducing C impurities. If there is covering H on the AlN surface, the adsorbed MMA1 will cause the covered H atoms to tend to detach from the AlN surface, which is conducive to subsequent growth.

Key words: AlN, density functional theory, adsorption, diffusion, computational chemistry

中图分类号: 

  • O 484

图1

AlN(0001)-Al面2×2周期超晶胞模型的三维视图(a)、俯视图(b)和主视图 (c);MMAl的分子模型(d);NH2/H=(0.25,0.75)的AlN(0001)表面(e)"

图2

不同NH2:H覆盖率的AlN(0001)表面"

图3

MMAl在各种混合覆盖表面(不同覆盖度的AlN表面)上H3位[(a)~(b)]和T4位[(f)~(j)]的稳定吸附结构"

图4

MMAl在不同覆盖度AlN表面的吸附能(a)和 MMAl不同覆盖度AlN表面吸附后的电子转移数目(b)"

图5

MMAl吸附前后Al-C键的键长(a) 和MMAl吸附前后Al-C键的化学键数量比例(b)"

图6

MMAl吸附前(0.25,0.75)AlN表面中Al—H键的键长(a) MMAl吸附后(0.25,0.75)AlN表面中Al—H键的键长(b)"

表1

MMAl吸附前后Al—H键的键长变化及化学键数量比例变化"

NH2 and H coverageBondAfter adsorption(H3)BondAfter adsorption(T4)

Length/

?

PopulationLength/?Population
(0,1)Alads-Hs21.690.48Alads-Hs21.700.49
Alsur-Hs21.800.32Alsur-Hs21.800.33
(0.25,075)Alads-Hs31.690.56Alads-Hs31.690.54
Alsur-Hs31.860.26Alsur-Hs31.850.27
(0.5,0.5)Alads-Hs11.710.59Alads-Hs41.680.56
Alsur-Hs11.970.23Alsur-Hs41.890.24
(0.75,0.25)Alsur-Hs41.700.74Alsur-Hs11.710.74

表2

MMAl在不同覆盖度AlN表面的扩散能垒"

NH2 and H coverageDiffusion energy barriers/eV
H3→T4T4→H3
(0,1)0.670.70
(0.25,075)0.950.98
(0.5,0.5)1.001.10
(0.75,0.25)2.352.41
(1,0)3.113.10
1 张红, 唐留. GaN-MOVPE寄生反应的密度泛函理论研究[J]. 化工学报, 2019, 70(9): 3275-3282.
Zhang H, Tang L. Density functional theory study on parasitic reactions of GaN-MOVPE[J]. CIESC Journal, 2019, 70(9): 3275-3282.
2 徐谦, 左然, 张红. MOCVD生长GaN的反应动力学分析与数值模拟[J]. 化工学报, 2009, 60(2): 384-388.
Xu Q, Zuo R, Zhang H. Analysis of reaction kinetics and numerical simulation of GaN growth by MOCVD[J]. CIESC Journal, 2009, 60(2): 384-388.
3 张红. 金属有机化学气相沉淀反应器结构的模拟优化[J]. 2009, 28(8): 1328-1332.
Zhang H. Simulation and optimization design in MOCVD reactor[J]. 2009, 28(8): 1328-1332.
4 Akiyama T. Ab initio-based study for adatom kinetics on AlN(0001) surfaces during metal-organic vapor-phase epitaxy growth[J]. Applied Physics Letters, 2012, 100(25): 499-502.
5 Jindal V, Shahedipour-sandvik F. Density functional theoretical study of surface structure and adatom kinetics for wurtzite AlN[J]. Journal of Applied Physics, 2009, 105(8): 1148-1153.
6 牛楠楠, 左然. AlN的MOCVD生长中表面吸附的量子化学研究[J]. 人工晶体学报, 2019, 48(7): 1268-1274.
Niu N N, Zuo R. Quantum chemistry study of surface adsorption during AlN MOCVD growth [J]. Journal of Artificial Crystals, 2019, 48 (7): 1268-1274.
7 González-Hernández R, González-Garcia A, López-Perez W. Density functional theory study of the adsorption and incorporation of Sc and Y on the AlN(0001) surface[J]. Journal of Crystal Growth, 2016, (443): 1-7.
8 Uchida T, Kusakabe K, Ohkawa K. Influence of polymer formation on metalorganic vapor-phase epitaxial growth of AlN[J]. Journal of Crystal Growth, 2007, 304(1): 133-140.
9 Suzuki H, Panyukova U, Togashi R, et al. Theoretical investigation of the decomposition mechanism of AlN(0001) surface under a hydrogen atmosphere[J]. Physica Status Solidi, 2010, 7(7/8): 2265-2267.
10 Lü N X, Xu Y J, Chen W K, et al. A DFT study for NH3 adsorption on the GaN (0001) surface[J]. Jiegou Huaxue, 2004, 23(8): 845-849.
11 Won Y S, Lee J, Kim C S, et al. Computational study of adsorption, diffusion, and dissociation of precursor species on the GaN (0 0 0 1) surface during GaN MOCVD[J]. Surf. Sci., 2009, 603 (4): L31-L34.
12 Suzuki H, Togashi R, Murakami H, et al. Ab initio calculation for an initial growth process of GaN on ( 0001) and ( 0001- ) surfaces by vapor phase epitaxy[J]. Physica Status Solidi, 2009, 6( S2) : 321-329.
13 Kempisty P, Strak P, Sakowski K, et al. Adsorption of ammonia on hydrogen covered GaN(0001) surface - density functional theory study[J]. Journal of Crystal Growth, 2014, 401(sep.1): 514-517.
14 Pignedoli C A, Di F R, Bertoni C M, et al. Surface effects in GaN growth[J]. Surface Science, 2003, 547(1): 63-70.
15 Suzuki H, Murakami H, Kumagai Y, et al. Theoretical study on the influence of surface hydrogen coverage on the initial growth process of AlN(0001) surfaces[J]. Physica Status Solidi (C), 2011, 8 (5): 1577-1580.
16 Suzuki H, Ogash R, Murakami H,et al. Theoretical analysis for surface reconstruction of AlN and InN in the presence of hydrogen[J]. Japanese Journal of Applied Physics, 2007, 46(8A): 5112-5115.
17 Inagaki Y, Kozawa T, Chemical reaction pathways for MOCVD growth of aluminum nitride[J]. ECS Journal of Solid State Science and Technology, 2016, 5 (2): 73-75.
18 Smith A R, Feenstra R M, Greve D W, et al. GaN(0001) surface structures studied using scanning tunneling microscopy and first-principles total energy calculations[J]. Surface Science, 1999, 423(1): 70-84.
19 Davis C S, Novikov S V, Cheng T S, et al. Surface reconstruction patterns of AlN grown by molecular beam epitaxy on sapphire[J]. Journal of Crystal Growth, 2001, 226(2): 203-208.
20 Xu Y N, Ching W Y. Electronic, optical, and structural properties of some wurtzite crystals[J]. Physical Review B Condensed Matter, 1993, 48(7): 4335-4351.
21 Schulz H, Thiemann K H. Crystal structure refinement of AlN and GaN[J]. Solid State Communications, 1977, 23(11): 815-819.
22 大卫·S·肖尔,贾妮丝·A·斯特克尔. 密度泛函理论[M]. 李健, 周勇, 译. 北京: 国防工业出版社, 2014: 10-50.
Shore D S, Stecker J A. Density Functional Theory [M]. Li J, Zhou Y, trans. Beijing: National Defense Industry Press, 2014: 10-50.
23 Walle C G V D, Neugebauer J. Structure and energetics of nitride surfaces under MOCVD growth conditions[J]. Journal of Crystal Growth, 2003, 248(Feb): 8-13.
24 Ikeda Y, Ohmori N, Maida N, et al. Theoretical study of gallium nitride crystal growth reaction mechanism[J]. Japanese Journal of Applied Physics, 2011, 50(50):943-949.
25 Lin T T, Xiang Y L, He C. A DFT study on poly (lactic acid) polymorphs [J]. Polymer, 2010, 51(12): 2779-2785.
26 Jordaan M, Helden P V, Sittert C G C E V, et al. Experimental and DFT investigation of the 1-octene metathesis reaction mechanism with the Grubbs 1 precatalyst[J]. Journal of Molecular Catalysis A Chemical, 2006, 254(1/2): 145-154.
27 Neugebauer J, Zywietz T, Scheffler M, et al. Theory of surfaces and interfaces of group III-nitrides[J]. Applied surface Science, 2000(159/160): 355-359.
28 Doi K, Maida N, Kimura K, et al. First-principle study on crystal growth of Ga and N layers on GaN substrate[J]. Physica Status Solidi (C), 2007, 4(7): 2293-2296.
29 陆大成, 段树坤. 金属有机化合物气相外延基础及应用(半导体科学与技术丛书)(精)[M]. 北京: 科学出版社, 2009: 37-50.
Lu D C, Duan S K. The Foundation and Application of Vapor Phase Epitaxy of Metal Organic Compounds (Semiconductor Science and Technology Series) (Fine) [M]. Beijing: Science Press, 2009: 37-50.
[1] 刘佳鑫, 徐宇, 花儿. 异辛基乙二胺-酰基丙氨酸型质子化离子液体的分子间氢键相互作用[J]. 化工学报, 2020, 71(S1): 15-22.
[2] 王晨, 折晓会, 张小松. 含空气净化过程的液态空气储能热力学研究[J]. 化工学报, 2020, 71(S1): 23-30.
[3] 赵惠忠, 雷敏, 黄天厚, 刘涛, 张敏. 复合吸附剂MWCNT/MgCl2的水蒸气吸附性能[J]. 化工学报, 2020, 71(S1): 272-281.
[4] 吴文翔, 韩小渠, 周志杰, 王宇, 种道彤. 循环转轮空调系统变工况除湿特性[J]. 化工学报, 2020, 71(S1): 355-360.
[5] 刘博文, 邓帅, 李双俊, 赵力, 杜振宇, 陈丽锦. 变温吸附碳捕集系统能效性能实验研究[J]. 化工学报, 2020, 71(S1): 382-390.
[6] 武君媛, 霍伟智, 李志强, 曾嘉恒, 江燕斌. 电纺zein-SLS纤维膜的制备及其离子吸附性能研究[J]. 化工学报, 2020, 71(S1): 252-260.
[7] 张红, 唐留. p型掺杂剂Cp2Mg在MOCVD气相中的反应机理研究[J]. 化工学报, 2020, 71(7): 2983-2991.
[8] 刘华,彭佳杰,余凯,倪毅,王芳,潘权稳,葛天舒,王如竹. 活性氧化铝基质新型复合吸附剂的制备和储热性能[J]. 化工学报, 2020, 71(7): 3354-3361.
[9] 王鹏, 刘京雷, 张胜中, 范得权, 张英, 徐宏. 结构化5A分子筛吸附床结构及工艺参数对N2/H2吸附性能的影响[J]. 化工学报, 2020, 71(7): 3114-3122.
[10] 刘昌会,黄文博,顾彦龙,饶中浩. 废弃聚苯乙烯塑料在环境与能源中的高值化应用进展[J]. 化工学报, 2020, 71(7): 2956-2972.
[11] 刘涛, 张书廷. Ba、Co共掺MnOx复合氧化物低温选择性催化还原NO研究[J]. 化工学报, 2020, 71(7): 3106-3113.
[12] 胡京宇,姚戎,潘玉航,朱超,宋爽,沈意. 可光助再生二氧化钛/层状双氢氧化物去除水体中有机染料[J]. 化工学报, 2020, 71(7): 3296-3303.
[13] 鞠佳, 祁文旭, 孔鹏飞, 汤佳玉, 梁飞雪, 张晓欣, 贺高红, 杨磊. TiO2/PVDF共混微滤膜的制备及其吸附胆红素的研究[J]. 化工学报, 2020, 71(6): 2705-2712.
[14] 毛东阳, 杨丹, 范杰平. 氧化石墨烯杂化分子印迹复合膜制备及性能研究[J]. 化工学报, 2020, 71(6): 2900-2911.
[15] 高利军, 白思林, 梁苏岑, 穆野, 董强, 胡超. ZIF衍生多孔碳纳米纤维用于高效电容去离子的研究[J]. 化工学报, 2020, 71(6): 2760-2767.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 罗淑娟, 李怀志, 费维扬, 王运东. Liquid Film Characteristics on Surface of Structured Packing[J]. CIESC Journal, 2009, 17(1): 47 -52 .
[2] 吴慧雄, 周梅, 屈一新, 李海霞, 殷恒波. Preparation and Characterization of Tungsten-substituted Molybdophosphoric Acids and Catalytic Cyclodehydration of 1,4-Butanediol to Tetrahydrofuran[J]. Chinese Journal of Chemical Engineering, 2009, 17(2): 200 -206 .
[3] 张克忠,孙鲁. 钒触媒剂的制造法及性能(摘要) [J]. CIESC Journal, 1951, 2(2): 10 .
[4] 秦霽光,陈洪生,屠之龙,崔秀云. 固体颗粒通过孔口的流动 [J]. CIESC Journal, 1966, 17(2): 115 -123 .
[5] 阮春蕾;欧阳洁;刘德峰;张红平;赵智峰.

黏弹性复杂流动的微观-宏观确定性模拟

[J]. CIESC Journal, 2008, 59(12): 3050 -3054 .
[6] 徐忠. 非极性混合物的假临界常数 [J]. CIESC Journal, 1980, 31(2): 191 -200 .
[7] 邓彤,柯家骏,陈家镛. 元素硫的歧化反应动力学研究 [J]. CIESC Journal, 1984, 35(4): 328 -334 .
[8] 胡星琪,吴勇,裴雁,陈锦荣. 聚氧化乙烯和聚丙烯酰胺在高速搅拌下的机械降解 [J]. CIESC Journal, 1985, 36(4): 468 -474 .
[9] 李庆斌,孙赤,王中来,吴燕翔. 压滤机过滤压密过程的解析 [J]. CIESC Journal, 1987, 38(2): 230 -239 .
[10] 张建侯,袁继堂. 液相扩散系数与浓度的新关联方程和实验考察 [J]. CIESC Journal, 1989, 40(1): 1 -9 .