化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 90-97.doi: 10.11949/0438-1157.20200052

• 流体力学与传递现象 • 上一篇    下一篇

聚合物熔体动态黏弹特性微尺度效应实验研究

刘奎1(),王敏杰1(),赵丹阳1,王艳色2   

  1. 1.大连理工大学机械工程学院,辽宁 大连 116024
    2.大连理工大学化工学院,辽宁 大连 116024
  • 收稿日期:2020-01-14 修回日期:2020-02-21 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 王敏杰 E-mail:Lkui@mail.dlut.edu.cn;mjwang@dlut.edu.cn
  • 作者简介:刘奎(1993—),男,博士研究生,Lkui@mail.dlut.edu.cn
  • 基金资助:
    国家自然科学基金项目(51675079)

Experimental research on micro-scale effect for dynamic viscoelastic properties of polymer melt

Kui LIU1(),Minjie WANG1(),Danyang ZHAO1,Yanshai WANG2   

  1. 1.School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
    2.School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
  • Received:2020-01-14 Revised:2020-02-21 Online:2020-04-25 Published:2020-05-22
  • Contact: Minjie WANG E-mail:Lkui@mail.dlut.edu.cn;mjwang@dlut.edu.cn

摘要:

针对聚合物熔体在微流道内,因拉伸/压缩作用导致的黏弹特性受物理尺度影响的问题,通过动态剪切流动实验系统研究了四种聚合物材料的黏弹特性,以及黏弹特性随物理尺度的变化规律。结果表明,在角频率1~100 rad/s的范围内,聚酰胺、聚氨酯、聚乳酸均表现出耗能模量大于储能模量的黏性占优特征,聚丙烯在高频区时表现出弹性占优特征。储能模量与耗能模量均随着物理特征尺度的减小而降低。物理特征尺度从1000 μm减小到250 μm的变化过程中,聚氨酯、聚酰胺和聚丙烯三种熔体的弹性效应对微尺度变化的敏感性比黏性效应强烈,储能模量变化率与耗能模量变化率的差值分别为5.8%、4.2%和2.6%。聚乳酸熔体的黏性效应对微尺度变化的敏感性与弹性效应基本一致,其储能模量变化率与耗能模量变化率的差值为-0.3%。材料分子链特征的差异导致储能模量与耗能模量随物理特征尺度减小的变化率不同。熔体黏弹特性对微尺度变化敏感性的强弱依次为聚氨酯、聚酰胺、聚丙烯和聚乳酸,其黏弹性特征参量的变化率分别为28.6%、22.6%、20.6%和19.45%。

关键词: 聚合物, 微通道, 储能模量, 耗能模量, 黏弹特性, 特征尺度

Abstract:

The viscoelastic properties of polymer melts during shear flow process are affected by the physical scale of the microchannels due to the stretch or compression. The viscoelastic properties of four polymers are researched systematically by the dynamic oscillation shear test, as well as the variation of viscoelastic properties with the characteristic scale. The experimental results show that polyamide (PA), thermoplastic polyurethane (TPU) and polylactic acid (PLA) all exhibit the viscosity dominant characteristics of loss modulus greater than storage modulus with the angular frequency varing from 1—100 rad/s. While polypropylene (PP) displays the elasticity-dominated characteristic at high angular frequencies. Both storage modulus and loss modulus decrease with the drop of characteristic scale. In the process of characteristic scale changing from 1000 μm to 250 μm, the elastic effect on the three polymer melts including polyamide, polyurethane and polypropylene are more sensitive to micro-scale changes than the viscosity effect. The difference between the change rate of storage modulus and that of loss modulus is 5.8%, 4.2% and 2.6%, respectively. The viscosity effect of polylactic acid melt on micro-scale changes is basically the same as the elastic effect. The change rate of loss modulus is only 0.3% higher than that of storage modulus. The difference of molecular chain characteristics of polymers leads to different change rates of storage modulus and loss modulus with characteristic scale. The order of sensitivity for polymer melts viscoelasticity to micro-scale changes is polyurethane melt, polyamide melt, polypropylene melt and polylactic acid melt, of which the change rates of viscoelastic characteristic parameters are 28.6%, 22.6%, 20.6% and 19.45%, respectively.

Key words: polymers, microchannels, storage modulus, loss modulus, viscoelastic properties, characteristic scale

中图分类号: 

  • TG 76

图1

聚合物熔体动态黏弹性测量原理"

图2

聚合物熔体在微尺度条件下的储能模量与耗能模量"

表1

PA熔体在不同物理尺度下黏弹特性平均值"

熔体剪切物理尺度

H/μm

储能模量平均值

Ga'/Pa

耗能模量平均值

Ga/Pa

10001550738401
4001284433750
2501168130540

表2

TPU熔体在不同物理尺度下黏弹特性平均值"

熔体剪切物理尺度

H/μm

储能模量平均值

Ga'/Pa

耗能模量平均值

Ga/Pa

100014738257
40012917369
25010096138

表3

PLA熔体在不同物理尺度下黏弹特性平均值"

熔体剪切物理尺度

H/μm

储能模量平均值

Ga'/Pa

耗能模量平均值

Ga/Pa

10001018725085
300937823077
250822520169

表4

PP熔体在不同物理尺度下黏弹特性平均值"

熔体剪切物理尺度

H/μm

储能模量平均值

Ga'/Pa

耗能模量平均值

Ga/Pa

10001644118368
3001415816426
2501284614824

表5

微尺度跨度750 μm时熔体的黏弹特性变化率"

聚合物熔体

储能模量变化率

ΔGa'/%

耗能模量变化率

ΔGa/%

PA24.720.5
TPU31.525.7
PLA19.319.6
PP21.919.3
1 Lewandowski A, Wilczynski K. General model of polymer melting in extrusion process[J]. Polimery-W, 2018, 63(6): 444-452.
2 Giboz J, Copponnex T, Mélé P. Microinjection molding of thermoplastic polymers: a review[J]. Journal of Micromechanics and Microengineering, 2007, 17(6): 96-109.
3 Liu Y J. Elastic behavior analysis of polymer melt extruding through capillary with an additional sinusoidal vibration[J]. Polymer Bulletin, 2006, 56(6): 599-606.
4 阮永金, 卢宇源, 安立佳. 管子模型[J]. 高分子学报, 2018, (12): 1493-1506.
Ruan Y J, Lu Y Y, An L J. Tube model[J]. Acta Polymerica Sinica, 2018, (12): 1493-1506.
5 Lai X M, Peng L F, Hu P, et al. Material behavior modelling in micro/meso-scale forming process with considering size/scale effects[J]. Computational Materials Science, 2008, 43(4): 1003-1009.
6 Chen C S, Chen S C, Liaw W L, et al. Rheological behavior of POM polymer melt flowing through micro-channels[J]. European Polymer Journal, 2008, 44(6): 1891-1898.
7 Yao D G, Kim B. Simulation of the filling process in micro channels for polymeric materials[J]. Journal of Micromechanics and Microengineering, 2002, 12(5): 604.
8 Razali A R, Qin Y. A review on micro-manufacturing, micro-forming and their key issues[J]. Procedia Engineering, 2013, 53: 665-672.
9 Tang D H, Marchesini F H, D’hooge D R, et al. Isothermal flow of neat polypropylene through a slit die and its die swell: bridging experiments and 3D numerical simulations[J]. Journal of Non-Newtonian Fluid Mechanics, 2019, 266: 33-45.
10 Tang D H, Marchesini F H, Cardon L, et al. Three-dimensional flow simulations for polymer extrudate swell out of slit dies from low to high aspect ratios[J]. Physics of Fluids, 2019, 31(9): 093103.
11 Tian H Q, Zhao D Y, Wang M J, et al. Study on extrudate swell of polypropylene in double-lumen micro profile extrusion[J]. Journal of Materials Processing Technology, 2015, 225: 357-368.
12 Liang J Z. Melt die-swell behavior of polyoxymethylene blended with ethylene-vinyl acetate copolymer and high-density polyethylene[J]. Polymer Testing, 2018, 68: 213-218.
13 Tian H Q, Zhao D Y, Wang M J, et al. Effect of die lip geometry on polymer extrudate deformation in complex small profile extrusion[J]. Journal of Manufacturing Science and Engineering, 2017, 139(6): 061005.
14 Behzadfar E, Ansari M, Konaganti V K, et al. Extrudate swell of HDPE melts (Ⅰ): Experimental[J]. Journal of Non-Newtonian Fluid Mechanics, 2015, 225: 86-93.
15 唐祯安, 王立鼎. 关于微尺度理论[J]. 光学精密工程, 2001, 9(6): 493-498.
Tang Z A, Wang L D. On microscale theory[J]. Optics and Precision Engineering, 2001, 9(6): 493-498.
16 叶超林, 吴宏武. 微流变特性及探究方法概述[J]. 中国塑料, 2015, 29(1): 7-11.
Ye C L, Wu H W. Properties and investigation methods of microrheology[J]. China Plastics, 2015, 29(1): 7-11.
17 Stephanou P S, Mavrantzas V G. Accurate prediction of the linear viscoelastic properties of highly entangled mono and bidisperse polymer melts[J]. Journal of Chemical Physics, 2014, 140(21): 214903.
18 Chan W L, Fu M W, Yang B. Study of size effect in micro-extrusion process of pure copper[J]. Materials & Design, 2011, 32(7): 3772-3782.
19 Deng Y J, Peng L F, Lai X M, et al. Constitutive modeling of size effect on deformation behaviors of amorphous polymers in micro-scaled deformation[J]. International Journal of Plasticity, 2017, 89: 197-222.
20 Gava A, Lucchetta G. On the performance of a viscoelastic constitutive model for micro injection moulding simulations[J]. Express Polymer Letters, 2012, 6(5): 417-426.
21 López-López M T, Rodríguez-Arco L, Zubarev A, et al. Effect of gap thickness on the viscoelasticity of magnetorheological fluids[J]. Journal of Applied Physics, 2010, 108(8): 083503.
22 Jonkkari I, Kostamo E, Kostamo J, et al. Effect of the plate surface characteristics and gap height on yield stresses of a magnetorheological fluid[J]. Smart Mater. Struct., 2012, 21(7): 075030.
23 Ewoldt R H, Johnston M T, Caretta L M. Experimental Challenges of Shear Rheology: How to Avoid Bad Data[M]. New York:Springer, 2015: 207-241.
24 Lyu P, Yang Z H, Zhao H, et al. Measurement of viscosity of liquid in micro-crevice[J]. Flow Measurement and Instrumentation, 2015, 46: 72-79.
25 王敏杰, 田慧卿, 赵丹阳. 聚合物熔体微尺度剪切黏度测量方法与黏度模型[J]. 机械工程学报. 2012, 48(16): 21-29.
Wang M J, Tian H Q, Zhao D Y. Micro-scale shear viscosity testing approach and viscosity model of polymer melts[J]. Journal of Mechanical Engineering, 2012, 48(16): 21-29.
26 徐斌, 王敏杰, 于同敏, 等. 微尺度效应下的聚合物熔体黏度理论及试验[J]. 机械工程学报. 2010, 46(19): 125-132.
Xu B, Wang M J, Yu T M, et al. Theoretical and experimental approach of the viscosity of polymer melt under micro-scale effect[J]. Journal of Mechanical Engineering, 2010, 46(19): 125-132.
27 Rosalina I, Bhattacharya M. Dynamic rheological measurements and analysis of starch gels[J]. Carbohydrate Polymers, 2002, 48: 191-202.
28 Ozkan S, Gillece T W, Senak L, et al. Characterization of yield stress and slip behaviour of skin/hair care gels using steady flow and LAOS measurements and their correlation with sensorial attributes[J]. International Journal of Cosmetic Science, 2012, 34(2): 193-201.
29 Ferry J D. Viscoelastic Properties of Polymers[M]. New York: John Wiley & Sons Inc., 1980: 1-31.
30 Song J S, Zhou H F, Wang X D, et al. Role of chain extension in the rheological properties, crystallization behaviors, and microcellular foaming performances of poly (butylene adipate-co-terephthalate)[J]. Journal of Applied Polymer Science, 2019, 136(14): 47322.
[1] 刘子初, 全贞花, 赵耀华, 靖赫然, 姚孟良, 刘新. 新型微通道平板热管蓄冰性能[J]. 化工学报, 2020, 71(S1): 120-128.
[2] 王瑞琪, 高赞军, 杨华, 胡文超, 詹宏波. 机载冷源参数对蒸发循环系统性能的影响[J]. 化工学报, 2020, 71(S1): 212-219.
[3] 杜伯尧, 全贞花, 侯隆澍, 赵耀华, 任海波. 新型光伏直膨式太阳能/空气能多能互补热泵性能[J]. 化工学报, 2020, 71(S1): 368-374.
[4] 陈琦, 李京坤, 宋昱, 何倩, 李雪芳. 流动聚焦微通道内牛顿微液滴在幂律剪切致稀流体中的生成研究[J]. 化工学报, 2020, 71(4): 1510-1519.
[5] 姚鑫宇, 程潇, 王晗, 沈洪, 吴慧英, 刘振宇. 铜基正弦波微通道内流动沸腾传热特性试验研究[J]. 化工学报, 2020, 71(4): 1502-1509.
[6] 亓士超, 朱蓉蓉, 刘昕, 薛丁铭, 刘晓勤, 孙林兵. 乙二胺不同掺杂模式下多孔有机聚合物对CO2的吸附[J]. 化工学报, 2020, 71(4): 1666-1675.
[7] 张宝丹, 翟佳羽, 靳海波, 郭晓燕, 杨索和, 何广湘, 马磊. 微通道连续沉淀法制备球形BaTiO3颗粒及其在医学检测干片上的应用[J]. 化工学报, 2020, 71(3): 1370-1379.
[8] 詹世平, 丁仕强, 王卫京, 李鸣明, 赵启成. 超临界流体技术制备生物可降解聚合物/药物纳米微粒研究进展[J]. 化工学报, 2020, 71(3): 923-935.
[9] 任六一, 赵颂, 王志, 燕方正, 刘莹莹, 韩向磊, 王纪孝. 抗污染芳香聚酰胺反渗透膜研究进展[J]. 化工学报, 2020, 71(2): 475-486.
[10] 刘子炜, 戴诗逸, 段聪, 张志伟, 庞子凡, 朱春英, 付涛涛, 马友光. 台阶式单微通道内气泡生成动力学[J]. 化工学报, 2020, 71(2): 552-565.
[11] 蒋瑞, 胡冬冬, 刘涛, 赵玲. 热塑性聚醚酯弹性体硬段含量对其超临界CO 2发泡行为的影响[J]. 化工学报, 2020, 71(2): 871-878.
[12] 刘静, 朱春英, 周灏, 付涛涛, 马友光. 微通道内浆料体系中的气泡生成特性及尺寸预测[J]. 化工学报, 2020, 71(2): 544-551.
[13] 付涛涛, 朱春英, 马友光. 微通道内卫星液滴生成机理与惯性分离机制[J]. 化工学报, 2020, 71(2): 451-458.
[14] 陈宇超, 崔永晋, 王凯, 骆广生. 阶梯式T型微通道内液滴、气泡分散规律[J]. 化工学报, 2020, 71(1): 265-273.
[15] 蒲兴群, 巨晓洁, 谢锐, 汪伟, 刘壮, 褚良银. 聚合物阵列微针及其在透皮给药系统的应用[J]. 化工学报, 2020, 71(1): 43-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .