化工学报 ›› 2020, Vol. 71 ›› Issue (7): 3091-3097.doi: 10.11949/0438-1157.20200027

• 流体力学与传递现象 • 上一篇    下一篇

单个固体颗粒促进薄液膜破裂的格子Boltzmann研究

刘学文(),李金京,全晓军(),熊伟   

  1. 上海交通大学机械与动力工程学院,工程热物理研究所,上海 200240
  • 收稿日期:2020-01-07 修回日期:2020-04-24 出版日期:2020-07-05 发布日期:2020-04-29
  • 通讯作者: 全晓军 E-mail:liuxuewen@sjtu.edu.cn;quan_xiaojun@sjtu.edu.cn
  • 作者简介:刘学文(1995—),男,硕士研究生,liuxuewen@sjtu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51676123)

Lattice Boltzmann study on single solid particle promoting thin liquid film rupture

Xuewen LIU(),Jinjing LI,Xiaojun QUAN(),Wei XIONG   

  1. Institute of Engineering Thermophysics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2020-01-07 Revised:2020-04-24 Online:2020-07-05 Published:2020-04-29
  • Contact: Xiaojun QUAN E-mail:liuxuewen@sjtu.edu.cn;quan_xiaojun@sjtu.edu.cn

摘要:

采用等温格子Boltzmann方法两相流模型结合颗粒运动模型对单个颗粒与薄液膜之间的相互作用进行了研究。通过模拟直观展示了单个球形疏水颗粒导致液膜破裂的详细过程,模拟结果表明与薄液膜接触的球形疏水颗粒会导致液膜弯曲变形从而产生毛细力,毛细力会驱动液膜在颗粒表面移动从而导致液膜破裂。疏水颗粒的接触角对液膜破裂的时间有明显影响,模拟发现接触角为106.7度的疏水颗粒导致液膜破裂时间最短。此外,当液膜的厚度发生变化时,颗粒导致液膜破裂的时间也会不同。

关键词: 粒子, 液膜, 多相流, 数值模拟, 格子Boltzmann方法

Abstract:

The isothermal lattice Boltzmann method two-phase flow model combined with the particle motion model was used to study the interaction between single particles and thin liquid film. The detailed process of liquid film rupture caused by a single spherical hydrophobic particle was visually shown through simulation. The whole process of the hydrophobic particles causing the rupture of the thin liquid film can be divided into two stages. Stage 1 is the stage in which the particle contacts the liquid film and moves to the inside of the liquid film under the action of the interfacial force until the particle just penetrates the liquid film. Stage 2 is the stage in which the upper and lower liquid surface are driven by the capillary force to move on the surface of the particle. It was found that hydrophobic particle with contact angle of 106.7° caused the shortest rupture time of liquid film. When the thickness of the liquid film is greater than the depth of the liquid immersed in the equilibrium of the particles at the vapor-liquid interface, the time of hydrophobic particle leading to the rupture of the liquid film will be greatly increased.

Key words: particle, liquid film, multiphase flow, numerical simulation, lattice Boltzmann method

中图分类号: 

  • TQ 021.9

图1

液面上漂浮单个粒子的计算域示意图(a);不同网格数下Gsp与颗粒接触角关系图(b)"

图2

单个固体颗粒与薄液膜相互作用的计算域示意图"

图3

液面弯曲产生毛细力示意图"

图4

球形疏水颗粒导致液膜破裂的两个阶段(接触角θ = 106.7°,液膜厚度h* l = 0.4)"

图5

不同接触角颗粒导致定厚度液膜破裂的两个阶段的时间分布(液膜厚度h* l = 0.4)"

图6

疏水颗粒导致液膜排水示意图(接触角θ = 150.5°,液膜厚度h* l = 0.45)"

图7

液膜破裂时间与液膜厚度及颗粒接触角关系"

1 Zhu X, Wang D, Craig V S J. Interaction of particles with surfactant thin films: implications for dust suppression [J]. Langmuir, 2019, 35(24): 7641-9.
2 邢耀文, 桂夏辉, 曹亦俊, 等. 相互作用力及液膜排液动力学研究进展 [J]. 煤炭学报, 2019, 44(10): 3185-92.
Xing Y W, Gui X H, Cao Y J, et al. Advance in the interaction force between bubble and particle and the thinning dynamics of thin liquid film [J]. Journal of China Coal Society, 2019, 44(10): 3185-92.
3 Ally J, Kappl M, Butt H J, et al. Detachment force of particles from air-liquid interfaces of films and bubbles [J]. Langmuir, 2010, 26(23): 18135-43.
4 Coursey J S, Kim J, Flow F. Nanofluid boiling: the effect of surface wettability [J]. International Journal of Heat, 2008, 29(6): 1577-1585.
5 Moreira T A, Moreira D C, Ribatski G. Nanofluids for heat transfer applications: a review [J]. Journal of the Brazilian Society of Mechanical Sciences, 2018, 40(6): 303.
6 Quan X, Wang D, Cheng P. An experimental investigation on wettability effects of nanoparticles in pool boiling of a nanofluid [J]. Int. J. Heat Mass Transfer, 2017, 108:32-40.
7 Wang D, Quan X, Liu C, et al. An experimental investigation on periodic single bubble growth and departure from a small heater submerged in a nanofluid containing moderately hydrophilic nanoparticles [J]. Int. Commun. Heat Mass Transfer, 2018, 95:1-8.
8 Binks B P, Horozov T S. Aqueous foams stabilized solely by silica nanoparticles [J]. Angew. Chem. Int. Ed., 2010, 44(24): 3722-3725.
9 Dippenaar A. The destabilization of froth by solids(Ⅰ):The mechanism of film rupture [J]. Int. J. Miner. Process., 1982, 9(1): 1-14.
10 Horozov T. Foams and foam films stabilised by solid particles [J]. Curr. Opin. Colloid Interface Sci., 2008, 13(3): 134-140.
11 Kaptay G. Interfacial criteria for stabilization of liquid foams by solid particles [J]. Colloids Surf. A, 2003, 230(1/2/3): 67-80.
12 Kaptay G. On the equation of the maximum capillary pressure induced by solid particles to stabilize emulsions and foams and on the emulsion stability diagrams [J]. Colloids Surf. A, 2006, 282/283(1): 387-401.
13 Morris G, Neethling S J, Cilliers J J. Predicting the failure of a thin liquid film loaded with spherical particles [J]. Langmuir, 2014, 30(4): 995-1003.
14 Aveyard R, Binks B P, Fletcher P D I, et al. Aspects of aqueous foam stability in the presence of hydrocarbon oils and solid particles [J]. Adv. Colloid Interface Sci., 1994, 48(94): 93-120.
15 Aveyard R, Cooper P, Fletcher P D I, et al. Foam breakdown by hydrophobic particles and nonpolar oil [J]. Langmuir, 1993, 9(2): 604-613.
16 Aronson M P. Influence of hydrophobic particles on the foaming of aqueous surfactant solutions [J]. Langmuir, 1986, 2(5): 653-659.
17 Morris G, Pursell M R, Neethling S J, et al. The effect of particle hydrophobicity, separation distance and packing patterns on the stability of a thin film [J]. J. Colloid Interface Sci., 2008, 327(1): 138-144.
18 Garrett P R. Defoaming: antifoams and mechanical methods [J]. Curr. Opin. Colloid Interface Sci., 2015, 20(2): 81-91.
19 Hunter T N, Pugh R J, Franks G V, et al. The role of particles in stabilising foams and emulsions [J]. Adv. Colloid Interface Sci., 2008, 137(2): 57-81.
20 Thareja P, Moritz K, Velankar S S. Interfacially active particles in droplet/matrix blends of model immiscible homopolymers: particles can increase or decrease drop size [J]. Rheol. Acta, 2010, 49(3): 285-298.
21 Frye G C, Berg J C. Antifoam action by solid particles [J]. J. Colloid Interface Sci., 1988, 127(1): 222-238.
22 Ladd A J C. Numerical simulations of particulate suspensions via a discretized Boltzmann equation(Ⅰ):Theoretical foundation [J]. J. Fluid Mech., 1994, 271:285-309.
23 Ladd A J C. Numerical simulations of particulate suspensions via a discretized Boltzmann equation(Ⅱ): Numerical results [J]. J. Fluid Mech., 1994, 271:311-339.
24 Joshi A S, Sun Y. Multiphase lattice Boltzmann method for particle suspensions [J]. Phys. Rev. E: Stat. Nonlinear Soft Matter. Phys., 2009, 79(6): 066703.
25 Gong S, Cheng P. Numerical investigation of droplet motion and coalescence by an improved lattice Boltzmann model for phase transitions and multiphase flows [J]. Comput. Fluids, 2012, 53:93-104.
26 Aidun C K, Lu Y, Ding E J. Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation [J]. J. Fluid Mech., 1998, 373:287-311.
27 Huang H, Thorne D T, Schaap M G, et al. Proposed approximation for contact angles in Shan-and-Chen-type multicomponent multiphase lattice Boltzmann models [J]. Phys. Rev. E Stat Nonlin. Soft. Matter. Phys., 2007, 76: 066701.
28 Gong S, Cheng P. A lattice Boltzmann method for simulation of liquid-vapor phase-change heat transfer [J]. Int. J. Heat Mass Transfer, 2012, 55(17/18): 4923-4927.
29 Xiong W, Cheng P, Quan X, et al. Droplet impact on a layer of solid particles placed above a substrate: a 3D lattice Boltzmann study [J]. Comput. Fluids, 2019, 188:18-30.
30 Wang D, Cheng P, Quan X. Photothermal nanobubble nucleation on a plasmonic nanoparticle: a 3D lattice Boltzmann simulation [J]. Int. J. Heat Mass Transfer, 2019, 140:786-797.
31 Liu X, Cheng P, Quan X. Lattice Boltzmann simulations for self-propelled jumping of droplets after coalescence on a superhydrophobic surface [J]. Int. J. Heat Mass Transfer, 2014, 73:195-200.
32 Garrett P R. The Science of Defoaming: Theory, Experiment and Applications [M]. CRC Press, 2014.
[1] 王磊, 赵福云, 蔡阳, 汪维伟, 王云鹤, 杨国彪. 置换通风模式下多元对流室内热与污染物输运[J]. 化工学报, 2020, 71(S1): 142-148.
[2] 李鑫郡, 陈玮玮, 鹿世化. 横流环境中压电风扇耦合射流流动换热特性[J]. 化工学报, 2020, 71(S1): 149-157.
[3] 王刚, 赵琰. 土壤源热泵供暖间歇运行时间的计算分析[J]. 化工学报, 2020, 71(S1): 430-435.
[4] 孙艳, 刘士涛, 邓尚, 余丽芸, 吕东伟, 马军, 刘献斌. 负载羧基化球状介孔纳米颗粒TFN膜的研究[J]. 化工学报, 2020, 71(S1): 454-460.
[5] 李炜,王晓明,蒋栋年,李亚洁,梁成龙. 基于SHPSO-GA-BP的成品汽油调和中加氢汽油组分辛烷值的预测[J]. 化工学报, 2020, 71(7): 3191-3200.
[6] 余廷芳, 高巨, 熊桂龙, 李水清, 姚强. 基于分子运动学的水汽在细颗粒表面异质核化的数值模拟[J]. 化工学报, 2020, 71(7): 3071-3079.
[7] 邓睿渠,汪林正,张睿智,罗永浩. 基于粒子群算法的生活垃圾高热值成分热解动力学特性研究[J]. 化工学报, 2020, 71(7): 3238-3246.
[8] 俞树荣,丁俊华,王世鹏,刘红,丁雪兴,孙宝财. 柱面密封气膜动压效应模拟及试验[J]. 化工学报, 2020, 71(7): 3220-3228.
[9] 鞠佳, 祁文旭, 孔鹏飞, 汤佳玉, 梁飞雪, 张晓欣, 贺高红, 杨磊. TiO2/PVDF共混微滤膜的制备及其吸附胆红素的研究[J]. 化工学报, 2020, 71(6): 2705-2712.
[10] 牛敬苒, 邓会宁, 张伟, 胡柏松, 张少峰. 二氧化钛调控基膜结构对氧化石墨烯复合膜性能的影响[J]. 化工学报, 2020, 71(6): 2850-2856.
[11] 尹春华, 彭思雨, 马垒珍, 张海洋, 闫海. 纳米氧化锌的生物法合成及固定脂肪酶的研究[J]. 化工学报, 2020, 71(5): 2248-2255.
[12] 葛诚, 孙见君, 苏徐辰, 马晨波, 於秋萍. 扩压式自泵送流体动静压型机械密封性能分析[J]. 化工学报, 2020, 71(5): 2202-2214.
[13] 谭畯坤, 刘玉东, 耿世超, 陈兵, 童明伟. 真空探针冷冻和复温性能实验测试及数值模拟[J]. 化工学报, 2020, 71(4): 1440-1449.
[14] 陈胡炜, 吉华, 冯东林, 李倩, 陈志. 基于多楔现象的微孔端面机械密封泄漏率分析及孔形设计[J]. 化工学报, 2020, 71(4): 1723-1733.
[15] 王金红, 陈志, 刘凡, 李建明. 密封环支撑边界条件对机械密封端面变形的影响[J]. 化工学报, 2020, 71(4): 1744-1753.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曹相生, 付昆明, 钱栋, 朱兆亮, 孟雪征. 甲醇为碳源时C/N对反硝化过程中亚硝酸盐积累的影响 [J]. 化工学报, 2010, 61(11): 2939 -2943 .
[2] 张政,谢灼利. 流体-固体两相流的数值模拟 [J]. CIESC Journal, 2001, 52(1): 1 -12 .
[3] 齐贺;李光明;王炜亮;熊尚凌;赵修华. 嵌入条件改变的配合法水回用网络优化 [J]. CIESC Journal, 2008, 59(7): 1650 -1656 .
[4] 陈国庆, 高继慧, 王帅, 付晓林, 徐莉莉, 秦裕琨. 烟气气相组分及Ca(OH)2对KMnO4氧化NO的影响机理 [J]. 化工学报, 2009, 60(9): 2314 -2320 .
[5] . 南京化学工业公司化工机械厂 等离子喷涂氧化铬陶瓷涂层 [J]. CIESC Journal, 1985, 36(4): 451 .
[6] 宋海华,余国琮. 用网络状态变量法估计二维定数混合池模型的参数 [J]. CIESC Journal, 1988, 39(6): 707 -715 .
[7] 黄风良,徐勇,顾其威,毛之侯. 涓流床反应器泡帽分布板的两相流动及均布性能 [J]. CIESC Journal, 1989, 40(6): 774 -780 .
[8] 陈光文, 袁权. 微化工技术 [J]. 化工学报, 2003, 54(4): 427 -439 .
[9] 杨亮;张春路.

跨临界CO2在短管内的非平衡流动特性

[J]. CIESC Journal, 2005, 56(3): 441 -445 .
[10] 朱子彬,马智华,张成芳,俞丰,金海华. 煤快速热解获得液态烃和气态烃的研究(Ⅱ)热解温度和压力的考察 [J]. CIESC Journal, 1992, 43(6): 726 -732 .