化工学报 ›› 2020, Vol. 71 ›› Issue (3): 1163-1173.doi: 10.11949/0438-1157.20191550

• 过程系统工程 • 上一篇    下一篇

湍流状态下化学品扩散溯源中不同目标函数的影响分析

董吉开(),杜文莉(),王冰,许乔伊   

  1. 华东理工大学化工过程先进控制和优化技术教育部重点实验室,上海 200237
  • 收稿日期:2019-12-19 修回日期:2019-12-26 出版日期:2020-03-05 发布日期:2019-12-24
  • 通讯作者: 杜文莉 E-mail:y10160074@mail.ecust.edu.cn;wld@ecust.edu.cn
  • 作者简介:董吉开(1990—),男,博士研究生,y10160074@mail.ecust.edu.cn
  • 基金资助:
    国家重点研发计划项目(2018YFC0809302);国家杰出青年科学基金项目(61725301);国家自然科学基金青年项目(21706069);中央高校基本科研业务费专项资金(222201917006)

Investigating impacts of cost functions to atmospheric dispersion modeling and source term estimation in turbulent condition

Jikai DONG(),Wenli DU(),Bing WANG,Qiaoyi XU   

  1. Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
  • Received:2019-12-19 Revised:2019-12-26 Online:2020-03-05 Published:2019-12-24
  • Contact: Wenli DU E-mail:y10160074@mail.ecust.edu.cn;wld@ecust.edu.cn

摘要:

化学气体泄漏会对生命财产安全及环境造成重大破坏,建立有效的监测装置及评估系统能够在发生泄漏事故时为应急救援提供辅助决策,有效降低泄漏带来的潜在风险。通常会通过在风险区域排布的气体浓度传感器检测气体浓度,根据气象条件及气体扩散前向分布模型来进行泄漏估计。由于泄漏场景数据不易获得,因此本文基于fires dynamics simulator(FDS)的大涡模拟方法模拟含湍流下的泄漏扩散场景获取数据,在此基础上研究了目标函数对于建模过程及溯源结果的影响。通过溯源结果发现,以浓度偏差平方和为目标函数的溯源结果从总体效果来看比其他目标函数更优,但其仍不能避免受湍流影响在某些场景的溯源指标远离平均值,而综合考虑不同目标的溯源结果在一定程度上能改善该情况。

关键词: 泄漏, 扩散, 模型, 湍流, 溯源, 目标函数

Abstract:

Hazardous gas release will threaten social security and cause damage to property and environment. Establish an effective emergency response system with monitoring devices can help reduce the potential risk and provide evaluation for release accident emergencies. The gas concentration is detected by the gas concentration sensor arranged in the risk area, and the leakage assessment is carried out according to the meteorological conditions and the forward diffusion model. Because the data of leakage scenarios is not easy to obtain, the large eddy simulation method based on Fires Dynamics Simulator (FDS) is used in this paper to generate date through simulating release scenarios with turbulent condition. On this basis, the impacts of the cost function to the modeling process and source term estimation are studied. The results of source term estimation shows the function of the square sum of concentration deviation is better than other functions. However, the function cannot avoid the condition that the estimation index of some scenes is far from the average value because of turbulent flow. In addition, a combination of the estimation results of different cost functions can improve the situation to a certain extent.

Key words: release, dispersion, model, turbulent condition, source term estimation, cost function

中图分类号: 

  • N 945.12

图1

泄露场景空间示意图"

图2

FDS仿真泄露场景示意图"

表1

高斯扩散系数的参数"

Modelabcd
Model 10.280650.726810.380290.59995
Model 20.308350.707560.348190.61652
Model 30.422710.654880.400530.56755

表2

测试场景下模型评价指标"

ModelScenarioR2FAC2FBNMSE
Model 110.88440.89560.13010.2607
20.94410.9095-0.10740.1069
30.76380.8080-0.10300.2810
Model 210.89140.89030.11800.2418
20.94150.9111-0.12000.1104
30.75580.8042-0.11570.2868
Model 310.89540.83890.05420.2185
20.92770.9173-0.18810.1274
30.76450.8232-0.17940.2594

图3

所建模型在各场景下评估指标箱体图"

图4

测试场景中预测浓度与观测浓度对比散点图"

图5

测试场景FDS仿真与各模型预测浓度在传感器平面浓度分布"

图6

所有场景溯源平均距离偏差及源强相对偏差"

表3

总60个场景溯源偏差结果的平均值及标准差"

模型

优化

目标

x轴偏差/my轴偏差/mz轴偏差/m总距离差/m源强相对偏差/%
平均值标准差平均值标准差平均值标准差平均值标准差平均值标准差
模型118.356.360.960.660.530.618.616.179.226.73
25.114.120.810.490.420.575.324.028.836.92
34.983.860.750.460.320.495.153.7910.688.47
45.454.650.810.490.350.545.634.589.617.37
55.454.650.810.490.350.545.634.5810.468.38
65.454.650.810.490.350.545.634.5810.758.34
713.287.821.250.991.451.1213.557.7310.428.75
模型218.136.380.960.660.560.648.426.168.996.22
25.144.110.810.490.500.615.364.029.467.35
35.203.880.750.460.390.555.373.8111.628.71
45.544.570.810.490.400.585.744.4810.067.74
55.544.570.810.490.400.575.734.4811.478.76
65.544.570.810.490.400.585.734.4811.488.73
713.217.951.260.991.651.1213.537.8211.289.54
模型316.665.340.960.660.630.706.955.199.617.52
27.474.320.800.490.630.637.644.2314.518.88
38.194.050.750.460.550.638.294.0215.6810.55
48.394.290.810.480.550.628.514.2314.059.13
58.384.290.810.490.540.628.504.2316.4910.20
68.394.290.810.480.550.628.524.2315.8710.44
710.087.671.270.971.690.9810.587.419.268.15

图7

所有场景下溯源结果指标的箱型图"

图8

不同场景下溯源位置与真实位置分布图"

图9

综合预测位置距离偏差指标"

1 Bhattacharjee Y J. Combating terrorism: new efforts to detect explosives require advances on many fronts[J]. Science, 2008, 320(5882): 1416-1417.
2 Efthimiou G C, Andronopoulos S, Tavares R, et al. CFD-Rans prediction of the dispersion of a hazardous airborne material released during a real accident in an industrial environment[J]. Journal of Loss Prevention in the Process Industries, 2017, 46: 23-36.
3 Kumar P, Feiz A A, Ngae P, et al. CFD simulation of short-range plume dispersion from a point release in an urban like environment[J]. Atmospheric Environment, 2015, 122: 645-656.
4 Lin Y, Chen G, Chen T, et al. The influence of advertisement boards, street and source layouts on CO dispersion and building intake fraction in three-dimensional urban-like models[J]. Building and Environment, 2019, 150: 297-321.
5 Dharmavaram S, Hanna S, Hansen O R. Consequence analysis—using a CFD model for industrial sites[J]. Process Safety Progress, 2005, 24(4): 316-272.
6 Mouilleau Y, Champassith A. CFD simulations of atmospheric gas dispersion using the fire dynamics simulator (Fds)[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(3): 316-323.
7 Kumar P, Singh S K, Ngae P, et al. Assessment of a CFD model for short-range plume dispersion: applications to the fusion field trial 2007 (FFT-07) diffusion experiment[J]. Atmospheric Research, 2017, 197: 84-93.
8 Onodera N, Aoki T, Shimokawabe T, et al. Large-scale les wind simulation using lattice Boltzmann method for a 10 km× 10 km area in metropolitan Tokyo[J]. TSUBAME e-Science Journal Global Scientific Information and Computing Center, 2013, 9: 2-8.
9 Hanna S R, Hansen O R, Ichard M, et al. CFD model simulation of dispersion from chlorine railcar releases in industrial and urban areas[J]. Atmospheric Environment, 2009, 43(2): 262-270.
10 Long K J, Zajaczkowski F J, Haupt S E, et al. Modeling a hypothetical chlorine release on a college campus[J]. Journal of Computers, 2009, 4(9): 881-890.
11 Baalisampang T, Abbassi R, Garaniya V, et al. Fire impact assessment in FLNG processing facilities using computational fluid dynamics (CFD)[J]. Fire Safety Journal, 2017, 92: 42-52.
12 Hutchinson M, Oh H, Chen W H J. A review of source term estimation methods for atmospheric dispersion events using static or mobile sensors[J]. Information Fusion, 2017, 36: 130-148.
13 陈增强. 危险化学品泄漏源的定位研究[D]. 北京: 北京化工大学, 2013.
Chen Z Q. Research on source identification approaches for hazardous chemical releases[D]. Beijing: Beijing University of Chemical Technology, 2013.
14 Lauret P, Heymes F, Aprin L, et al. Atmospheric dispersion modeling using artificial neural network based cellular automata[J]. Environmental Modelling & Software, 2016, 85: 56-69.
15 Wang B, Qian F. Three dimensional gas dispersion modeling using cellular automata and artificial neural network in urban environment[J]. Process Safety and Environmental Protection, 2018, 120: 286-301.
16 Zhou Z, Chen J, Jin G. Prediction of lagrangian dispersion of fluid particles in isotropic turbulent flows using large-eddy simulation method[J]. Acta Mechanica, 2017, 228(9): 3203-3222.
17 Trini C S, Armand P, Tinarelli G, et al. Validation of a lagrangian particle dispersion model with wind tunnel and field experiments in urban environment[J]. Atmospheric Environment, 2018, 193: 273-289.
18 Holmes N S, Morawska L J. A review of dispersion modelling and its application to the dispersion of particles: an overview of different dispersion models available[J]. Atmospheric Environment, 2006, 40(30): 5902-5928.
19 Bosanquet C, Pearson J L. The spread of smoke and gases from chimneys[J]. Transactions of the Faraday Society, 1936, 32: 1249-1263.
20 Green A, Singhal R, Venkateswar R. Analytic extensions of the gaussian plume model[J]. Journal of the Air Pollution Control Association, 1980, 30(7): 773-776.
21 Weil J, Brower R P. An updated Gaussian plume model for tall stacks[J]. Journal of the Air Pollution Control Association, 1984, 34(8): 818-827.
22 Horst T W. A surface depletion model for deposition from a Gaussian Plume[J]. Atmospheric Environment, 1977, 11(1): 41-46.
23 de Visscher A. Air Dispersion Modeling: Foundations and Applications[M]. John Wiley & Sons, 2013: 141-200.
24 Li H, Zhang J, Yi J. Computational source term estimation of the Gaussian puff dispersion[J]. Soft Computing, 2018, 23(1): 59-75.
25 Qiu S, Chen B, Wang R, et al. Atmospheric dispersion prediction and source estimation of hazardous gas using artificial neural network, particle swarm optimization and expectation maximization[J]. Atmospheric Environment, 2018, 178: 158-163.
26 Cui J, Lang J, Chen T, et al. Investigating the impacts of atmospheric diffusion conditions on source parameter identification based on an optimized inverse modelling method[J]. Atmospheric Environment, 2019, 205: 19-29.
27 Efthimiou G C, Kovalets I V, Venetsanos A, et al. An optimized inverse modelling method for determining the location and strength of a point source releasing airborne material in urban environment[J]. Atmospheric Environment, 2017, 170: 118-129.
28 Wang Y, Huang H, Huang L, et al. Source term estimation of hazardous material releases using hybrid genetic algorithm with composite cost functions[J]. Engineering Applications of Artificial Intelligence, 2018, 75: 102-113.
29 Ma D, Tan W, Zhang Z, et al. Parameter identification for continuous point emission source based on tikhonov regularization method coupled with particle swarm optimization algorithm[J]. J. Hazard. Mater., 2017, 325: 239-250.
30 Hutchinson M, Oh H, Chen W H. Entrotaxis as a strategy for autonomous search and source reconstruction in turbulent conditions[J]. Information Fusion, 2018, 42: 179-189.
31 Ma D, Tan W, Wang Q, et al. Location of contaminant emission source in atmosphere based on optimal correlated matching of concentration distribution[J]. Process Safety and Environmental Protection, 2018, 117: 498-510.
32 Cervone G, Franzese P. Monte Carlo source detection of atmospheric emissions and error functions analysis[J]. Computers & Geosciences, 2010, 36(7): 902-909.
33 Hansen N. The CMA Evolution Strategy: A Tutorial[M]. New York: Springer, 2005.
34 Auger A, Hansen N. Tutorial CMA-Es: evolution strategies and covariance matrix adaptation[C]// Conference Companion on Genetic & Evolutionary Computation. New York: Association for Computing Machinery, 2012.
35 Rood A S. Performance evaluation of aermod, calpuff, and legacy air dispersion models using the winter validation tracer study dataset[J]. Atmospheric Environment, 2014, 89: 707-720.
36 Tartakovsky D, Stern E, Broday D M. Comparison of dry deposition estimates of aermod and calpuff from area sources in flat terrain[J]. Atmospheric Environment, 2016, 142: 430-432.
[1] 王金红, 陈志, 刘凡, 李建明. 密封环支撑边界条件对机械密封端面变形的影响[J]. 化工学报, 2020, 71(4): 1744-1753.
[2] 王少雄, 李玉星, 刘翠伟, 梁杰, 李安琪, 薛源. 水下输气管道泄漏扩散特性模拟研究[J]. 化工学报, 2020, 71(4): 1898-1911.
[3] 车健, 江锦波, 李纪云, 彭旭东, 马艺, 王玉明. 节流孔出气模式对静压干气密封稳态性能影响[J]. 化工学报, 2020, 71(4): 1734-1743.
[4] 陈胡炜, 吉华, 冯东林, 李倩, 陈志. 基于多楔现象的微孔端面机械密封泄漏率分析及孔形设计[J]. 化工学报, 2020, 71(4): 1723-1733.
[5] 周星宇, 曾凡桂, 相建华, 邓小鹏, 相兴华. 马脊梁镜煤有机质大分子模型构建及分子模拟[J]. 化工学报, 2020, 71(4): 1802-1811.
[6] 李济超, 季璨, 吕明明, 王静, 刘志刚, 李慧君. 微通道内单柱绕流特性的Micro-PIV实验研究[J]. 化工学报, 2020, 71(4): 1597-1608.
[7] 杨鑫宇, 吴杰, 张建庭, 吴纯鑫, 赵德明. 功能化磁性纳米复合材料Fe3O4-mPD/SP吸附Cr(Ⅵ)研究[J]. 化工学报, 2020, 71(3): 1060-1071.
[8] 孙宗康, 张笑丹, 杨林军, 陈帅, 吴新. 化学与湍流团聚耦合促进燃煤细颗粒物团聚与脱除[J]. 化工学报, 2020, 71(3): 1317-1325.
[9] 黄耀波, 刘佳新, 徐祖华, 赵均, 邵之江. 基于PWA融合模型的注塑过程保压段建模及控制策略[J]. 化工学报, 2020, 71(3): 1103-1110.
[10] 韩宇, 李俊芳, 高强, 田宇, 禹国刚. 基于故障判别增强KECA算法的故障检测[J]. 化工学报, 2020, 71(3): 1254-1263.
[11] 冯毅萍, 章途潮, 陈歆. 面向智能制造的多要素生产成本建模方法[J]. 化工学报, 2020, 71(3): 1111-1121.
[12] 何德峰, 张永达, 李廉明, 仇翔. 循环流化床燃烧系统无终端约束字典序经济预测控制[J]. 化工学报, 2020, 71(3): 1210-1216.
[13] 罗小燕, 戴聪聪, 程铁栋, 蔡改贫, 刘鑫, 刘吉顺. 基于改进EWT-多尺度熵和KELM的球磨机负荷识别方法[J]. 化工学报, 2020, 71(3): 1264-1277.
[14] 关宏伟, 叶凌箭, 沈非凡, 顾德, 宋执环. 基于经济模型预测控制的金氰化浸出过程动态实时优化[J]. 化工学报, 2020, 71(3): 1122-1130.
[15] 彭雪, 芦琛璘, 卢滇楠. 氧气和一氧化碳在人血红蛋白迁移过程研究[J]. 化工学报, 2020, 71(2): 724-735.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 苏延磊,刘会洲. 包埋嵌段共聚物的水凝胶萃取低浓度有机物 [J]. CIESC Journal, 2000, 51(S1): 256 -259 .
[2] 焦波;邱利民;陆军亮.

环状流起始点初始携带份额的分析计算

[J]. CIESC Journal, 2008, 59(11): 2750 -2755 .
[3] 吕建华,李春利,耿辉. 异辛醇-甲苯萃取盐湖卤水中硼酸的动力学 [J]. CIESC Journal, 2010, 61(12): 3124 -3129 .
[4] 康定学,陈宪满,刘子琴,王凤鸣,邢育访,肖福全,李品翠. 用斜发沸石岩分离提取卤水中钾、铷、铯 [J]. CIESC Journal, 1983, 34(2): 173 -183 .
[5] 杨斌鑫, 欧阳洁, 郑素佩, 赵智峰. 充模过程的Level Set两相流模拟 [J]. 化工学报, 2009, 60(11): 2729 -2736 .
[6] 曹成波, 于学丽, 王振芳, 韩红滨, 韩念风, 刘宗林. 聚合型荧光增白剂 [J]. 化工学报, 2005, 56(3): 375 -381 .
[7] 王春蓉, 王淑梅, 周竹发, 田冉冉, 李延洁, 戴小春, 田盛. α-Fe2O3/Ag核壳结构纳米复合颗粒的制备及SESR性能 [J]. 化工学报, 2011, 62(1): 276 -280 .
[8] 李佟茗,贾绍义. 表面粘度对小气泡聚并的影响 [J]. CIESC Journal, 1995, 46(5): 532 -538 .
[9] 蒋书波, 林锦国, 程明霄, 王瑾. 基于拉曼技术的汽油辛烷值测定系统设计[J]. 化工学报, 2011, 62(8): 2188 -2194 .
[10] 蒋元力,王子镐,傅举孚. 乳化液膜萃取乳酸稀溶液过程中的渗透溶胀及模拟 [J]. CIESC Journal, 1998, 49(2): 208 -216 .