化工学报 ›› 2020, Vol. 71 ›› Issue (7): 3354-3361.doi: 10.11949/0438-1157.20191537

• 材料化学工程与纳米技术 • 上一篇    下一篇

活性氧化铝基质新型复合吸附剂的制备和储热性能

刘华1,2,3(),彭佳杰3,余凯1,2,倪毅1,2,王芳1,2,潘权稳3(),葛天舒3,王如竹3   

  1. 1.空调设备及系统运行节能国家重点实验室,广东 珠海 517907
    2.珠海格力电器股份有限公司,广东 珠海 517907
    3.上海交通大学机械与动力工程学院,上海 200240
  • 收稿日期:2019-12-18 修回日期:2020-03-07 出版日期:2020-07-05 发布日期:2020-07-09
  • 通讯作者: 潘权稳 E-mail:liuhua@cn.gree.com;sailote@sjtu.edu.cn
  • 作者简介:刘华(1977—),男,博士研究生,高级工程师,liuhua@cn.gree.com
  • 基金资助:
    空调设备及系统运行节能国家重点实验室开放基金项目(ACSKL2018KT1203);上海市青年科技英才扬帆计划项目(19YF1423100);上海交通大学“新进青年教师启动计划”项目

Preparation and thermal storage performance of novel composite sorbent with activated alumina matrix

Hua LIU1,2,3(),Jiajie PENG3,Kai YU1,2,Yi NI1,2,Fang WANG1,2,Quanwen PAN3(),Tianshu GE3,Ruzhu WANG3   

  1. 1.State Key Laboratory of Air-Conditioning Equipment and System Energy Conservation, Zhuhai 517907, Guangdong, China
    2.Gree Electric Appliances, Inc. of Zhuhai, Zhuhai 517907, Guangdong, China
    3.School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2019-12-18 Revised:2020-03-07 Online:2020-07-05 Published:2020-07-09
  • Contact: Quanwen PAN E-mail:liuhua@cn.gree.com;sailote@sjtu.edu.cn

摘要:

研制了一种以活性氧化铝为基质、CaCl2为吸湿盐的新型复合吸附剂,可用于以水为吸附质的热化学吸附储热系统,并对其内部结构、吸附性能和储热性能进行了研究。利用恒温恒湿箱确定出现溶液泄漏现象的最大含盐量,并对30℃和多种相对湿度工况下的动态和平衡吸附特性进行测量,研究了含盐量和相对湿度对吸附剂的吸附特性的影响,结果表明含盐量和相对湿度越大,复合吸附剂的吸水能力越强。利用全自动比表面积与孔隙度分析仪测量材料的比表面积和孔体积,利用同步热分析仪测试了复合吸附剂的储热密度,其中含盐量最高的复合吸附剂的储热密度最高,质量和体积储热密度分别达到0.51 kW·h/kg和610.2 kW·h/m3,具有良好的储热性能。

关键词: 吸附, 吸附剂, 制备, 储热, 活性氧化铝, 氯化钙

Abstract:

A new type of composite adsorbent based on activated alumina(AA) and CaCl2 as a hygroscopic salt was developed. It can be used in thermochemical adsorption heat storage systems with water as the adsorbent, and its internal structure, adsorption performance and heat storage performance were studied. Samples with different salt contents were fabricated to store low-temperature thermal heat by impregnation methods. Morphologies records, sorption kinetics and thermal energy storage performance of AA/CaCl2 composite sorbent were investigated. The maximum salt content of the solution leakage phenomenon was determined. Sorption kinetics and equilibrium sorption capacity under conditions of 30℃ and multi relative humidity were studied by utilizing constant temperature and humidity chamber. Influence of salt content and relative humidity on the sorption performance of AA/CaCl2 composite sorbent was studied. Results showed sorption capacity of AA/CaCl2 composite sorbent increased with increasing salt content and relative humidity. The specific surface area and pore volume were measured by automatic specific surface area and porosity analyzer. Energy storage density was measured by simultaneous thermal analyzer. The sample with highest salt content had the best energy storage performance with 0.51 kW·h/kg mass energy storage density and 610.2 kW·h/m3 volumetric energy storage density. As a consequence, AA/CaCl2 composite sorbent is promising sorbent in field of chemisorption thermal energy storage.

Key words: adsorption, sorbent, preparation, heat storage, activated alumina, calcium chloride

中图分类号: 

  • TK 02

图1

复合吸附剂制作流程示意图"

表1

AA和AA/ CaCl2复合吸附剂的含盐量和堆积密度"

SampleSalt content/%(mass)Bulk density(kg/m3)
AA0908.0
AACa54.7923.8
AACa106.3951.6
AACa158.3980.9
AACa2010.61028.2
AACa2515.31123.5
AACa3017.91208.2

图2

活性氧化铝照片(a);AA(b)、AACa15(c)、AACa30(d)的TEM影像"

图3

AA/ CaCl2复合吸附剂的动态吸附特性曲线(30℃和60%RH)"

图4

复合吸附剂在30℃、不同相对湿度条件下的平衡吸附量"

图5

复合吸附剂在30℃和60%RH条件下多次吸附/解吸的平衡吸附量"

表2

不同含盐量复合吸附剂的孔比表面积和孔体积"

样品比表面积/(m2/g)孔体积/(cm3/g)
AA238.770.39
AACa15197.730.30
AACa30128.810.23

图6

复合吸附剂的STA测试结果"

图7

复合吸附剂的质量储热密度"

图8

复合吸附剂的体积储热密度"

1 Cabeza L F, Solé A, Barreneche C. Review on sorption materials and technologies for heat pumps and thermal energy storage‍[J]. Renewable Energy, 2017, 110: 3-39.
2 Aydin D, Casey S P, Riffat S. The latest advancements on thermochemical heat storage systems‍[J]. Renewable and Sustainable Energy Reviews, 2015, 41: 356-367.
3 吴韶飞, 闫霆, 蒯子函, 等. 高导热膨胀石墨/棕榈酸定形复合相变材料的制备及储热性能研究‍[J]. 化工学报, 2019, 70(9): 3551-3562.
Wu S F, Yan T, Kuai Z H, et al. Preparation and thermal energy storage properties of high heat conduction expanded graphite/palmitic acid form-stable phase change materials‍[J]. CIESC Journal, 2019, 70(9): 3551-3562.
4 张艳楠, 王如竹, 李廷贤. 蛭石/氯化钙复合吸附剂的吸附特性和储热性能‍[J]. 化工学报, 2018, 69(1): 363-370.
Zhang Y N, Wang R Z, Li T X. Sorption characteristics and thermal storage performance of expanded vermiculite/CaCl2 composite sorbent‍[J]. CIESC Journal, 2018, 69(1): 363-370.
5 Yan T, Wang C Y, Li D. Performance analysis of a solid-gas thermochemical composite sorption system for thermal energy storage and energy upgrade‍[J]. Applied Thermal Engineering, 2019, 150: 512-521.
6 Kuznik F, Johannes K, Obrecht C. Chemisorption heat storage in buildings: state-of-the-art and outlook‍[J]. Energy & Buildings, 2015, 106: 183-191.
7 Oleksandr S, Emilie C, Nicolas H, et al. Performance characterization of salt-in-silica composite materials for seasonal energy storage design‍[J]. Journal of Energy Storage, 2018, 19: 320-336.
8 Mahon D, Claudio G, Eames P. A study of novel high performance and energy dense zeolite composite materials for domestic interseasonal thermochemical energy storage‍[J]. Energy Procedia, 2019, 158: 4489-4494.
9 van Alebeek R, Scapino L, Beving M A J M, et al. Investigation of a household-scale open sorption energy storage system based on the zeolite 13X/water reacting pair‍[J]. Applied Thermal Engineering, 2018, 139: 325-333.
10 Rouhani M, Huttema W, Bahrami M. Thermal conductivity of AQSOA FAM-Z02 packed bed adsorbers in open and closed adsorption thermal energy storage systems‍[J]. International Journal of Refrigeration, 2019, 105: 158-168.
11 Zhang Y N, Wang R Z, Zhao Y J, et al. Development and thermochemical characterizations of vermiculite/SrBr2 composite sorbents for low-temperature heat storage‍[J]. Energy, 2016, 115(1): 120-128.
12 Teo H W B, Chakraborty A, Kayal S. Post synthetic modification of MIL-101(Cr) for S-shaped isotherms and fast kinetics with water adsorption‍[J]. Applied Thermal Engineering, 2017, 120: 453-462.
13 ans P D, Courbon E, Permyakova A, et al. A new strontium bromide MOF composite with improved performance for solar energy storage application‍[J]. Journal of Energy Storage, 2019, 25: 100881.
14 Grekova A D, Gordeeva L G, Aristov Y I. Composite “LiCl/vermiculite” as advanced water sorbent for thermal energy storage‍[J]. Applied Thermal Engineering, 2017, 124: 1401-1408.
15 Liu H, Nagano K, Togawa J. A composite material made of mesoporous siliceous shale impregnated with lithium chloride for an open sorption thermal energy storage system‍[J]. Solar Energy, 2015, 111: 186-200.
16 Palomba V, Sapienza A, Aristov Y. Dynamics and useful heat of the discharge stage of adsorptive cycles for long term thermal storage‍[J]. Applied Energy, 2019, 248: 299-309.
17 Brancato V, Gordeeva L G, Sapienza A, et al. Experimental characterization of the LiCl/vermiculite composite for sorption heat storage applications‍[J]. International Journal of Refrigeration, 2019, 105: 92-100.
18 Courbon E, ans P D, Permyakova A, et al. A new composite sorbent based on SrBr2, and silica gel for solar energy storage application with high energy storage density and stability‍[J]. Applied Energy, 2017, 190: 1184-1194.
19 Jabbari-Hichri A, Bennici S, Auroux A. CaCl2-containing composites as thermochemical heat storage materials‍[J]. Solar Energy Materials and Solar Cells, 2017, 172: 177-185.
20 Hiremath C R, Kadoli R, Katti V V. Experimental and theoretical study on dehumidification potential of clay-additives based CaCl2 composite desiccants‍[J]. Applied Thermal Engineering, 2018, 129: 70-83.
21 许嘉兴, 李廷贤, 王如竹. 氯化镁/沸石复合材料的吸附特性及储热性能‍[J]. 化工学报, 2016, 67: 348-355.
Xu J X, Li T X, Wang R Z. Sorption characteristics and heat storage performance of MgCl2/13X zeolite composite sorbent‍[J]. CIESC Journal, 2016, 67: 348-355.
22 Brancato V, Calabrese L, Palomba V, et al. MgSO4·7H2O filled macro cellular foams: an innovative composite sorbent for thermo-chemical energy storage applications for solar buildings‍[J]. Solar Energy, 2018, 173: 1278-1286.
23 闫霆, 王文欢, 王程遥. 化学储热技术的研究现状及进展‍[J]. 化工进展, 2018, 37(12): 4586-4595.
Yan T, Wang W H, Wang C Y. Research situation and progress on chemical heat storage technology‍[J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4586-4595.
24 Pan Q W, Wang R Z, Lu Z S, et al. Experimental investigation of an adsorption refrigeration prototype with the working pair of composite adsorbent-ammonia‍[J]. Applied Thermal Engineering, 2014, 72(2): 275-282.
25 Jarimi H, Aydin D, Zhang Y A, et al. Review on the recent progress of thermochemical materials and processes for solar thermal energy storage and industrial waste heat recovery‍[J]. International Journal of Low-Carbon Technologies, 2018, 14 (1): 44-69.
26 Aristov Y I, Restuccia G, Cacciola G, et al. A family of new working materials for solid sorption air conditioning systems‍[J]. Applied Thermal Engineering, 2002, 22(2): 191-204.
27 Patra A K, Dutta A, Bhaumik A. Self-assembled mesoporous g-Al2O3 spherical nanoparticles and their efficiency for the removal of arsenic from water‍[J]. Journal of Hazardous Materials, 2012, 201/202: 170-177.
28 陈金妹, 张健. ASAP2020比表面积及孔隙分析仪的应用‍[J]. 分析仪器, 2009, (3): 61-64.
Chen J M, Zhang J. Application of ASAP2020 specific surface area and porosity analyzer‍ [J]. Analytical Instrumentation, 2009, (3): 61-64.
29 Zhang Y N, Wang R Z, Li T X. Thermochemical characterizations of high-stable activated alumina/LiCl composites with multistage sorption process for thermal storage‍[J]. Energy, 2018, 156: 240-249.
[1] 武君媛, 霍伟智, 李志强, 曾嘉恒, 江燕斌. 电纺zein-SLS纤维膜的制备及其离子吸附性能研究[J]. 化工学报, 2020, 71(S1): 252-260.
[2] 王晨, 折晓会, 张小松. 含空气净化过程的液态空气储能热力学研究[J]. 化工学报, 2020, 71(S1): 23-30.
[3] 赵惠忠, 雷敏, 黄天厚, 刘涛, 张敏. 复合吸附剂MWCNT/MgCl2的水蒸气吸附性能[J]. 化工学报, 2020, 71(S1): 272-281.
[4] 吴文翔, 韩小渠, 周志杰, 王宇, 种道彤. 循环转轮空调系统变工况除湿特性[J]. 化工学报, 2020, 71(S1): 355-360.
[5] 刘博文, 邓帅, 李双俊, 赵力, 杜振宇, 陈丽锦. 变温吸附碳捕集系统能效性能实验研究[J]. 化工学报, 2020, 71(S1): 382-390.
[6] 刘昌会,黄文博,顾彦龙,饶中浩. 废弃聚苯乙烯塑料在环境与能源中的高值化应用进展[J]. 化工学报, 2020, 71(7): 2956-2972.
[7] 刘涛, 张书廷. Ba、Co共掺MnOx复合氧化物低温选择性催化还原NO研究[J]. 化工学报, 2020, 71(7): 3106-3113.
[8] 王鹏, 刘京雷, 张胜中, 范得权, 张英, 徐宏. 结构化5A分子筛吸附床结构及工艺参数对N2/H2吸附性能的影响[J]. 化工学报, 2020, 71(7): 3114-3122.
[9] 孙巍, 左然. MMAl在NH2与H混合覆盖的AlN(0001)-Al表面的吸附与扩散研究[J]. 化工学报, 2020, 71(7): 3213-3219.
[10] 胡京宇, 姚戎, 潘玉航, 朱超, 宋爽, 沈意. 可光助再生二氧化钛/层状双氢氧化物去除水体中有机染料[J]. 化工学报, 2020, 71(7): 3296-3303.
[11] 牛敬苒, 邓会宁, 张伟, 胡柏松, 张少峰. 二氧化钛调控基膜结构对氧化石墨烯复合膜性能的影响[J]. 化工学报, 2020, 71(6): 2850-2856.
[12] 王永胜, 兰小林, 邱天, 张新平, 吴莹莹, 陈莉, 徐伟祥, 郭栋杰, 段正康. 铜基石墨烯复合催化剂的合成与表征[J]. 化工学报, 2020, 71(6): 2889-2899.
[13] 高利军, 白思林, 梁苏岑, 穆野, 董强, 胡超. ZIF衍生多孔碳纳米纤维用于高效电容去离子的研究[J]. 化工学报, 2020, 71(6): 2760-2767.
[14] 黄睿, 方晓明, 凌子夜, 张正国. 高性能三水醋酸钠-尿素-膨胀石墨混合相变材料的制备及其在电地暖中的应用性能[J]. 化工学报, 2020, 71(6): 2713-2723.
[15] 杨旺, 李云, 田晓娟, 杨帆, 李永峰. 超临界CO2剥离法制备石墨烯的过程强化研究[J]. 化工学报, 2020, 71(6): 2599-2611.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!