化工学报 ›› 2020, Vol. 71 ›› Issue (3): 1234-1245.doi: 10.11949/0438-1157.20191532

• 过程系统工程 • 上一篇    下一篇

基于PR立方型状态方程普遍化温度函数的研究与评价

赵文英1,2,李文文2,孙晓岩2,曹晓荣1,项曙光1,2()   

  1. 1.齐鲁师范学院化学与化工学院,山东 济南 250200
    2.青岛科技大学过程系统工程研究所,山东 青岛 266042
  • 收稿日期:2019-12-18 修回日期:2020-01-06 出版日期:2020-03-05 发布日期:2019-12-24
  • 通讯作者: 项曙光 E-mail:xsg@qust.edu.cn
  • 基金资助:
    山东省重大科技创新项目工程(2018CXGC1102)

Research and evaluation on generalized alpha functions based on PR EoS

Wenying ZHAO1,2,Wenwen LI2,Xiaoyan SUN2,Xiaorong CAO1,Shuguang XIANG1,2()   

  1. 1.College of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, Shandong, China
    2.Institute of Process System Engineering,Qingdao University of Science and Technology, Qingdao 266042, Shandong, China
  • Received:2019-12-18 Revised:2020-01-06 Online:2020-03-05 Published:2019-12-24
  • Contact: Shuguang XIANG E-mail:xsg@qust.edu.cn

摘要:

用11类70种非极性、弱极性和极性物质的实验蒸汽压数据对适用于Peng-Robinson状态方程(PR EoS)的17种普遍化温度函数对蒸汽压的预测能力进行了评价。根据各类物质蒸汽压预测结果平均相对偏差评价普遍化温度函数的预测能力。结果表明,Robinson-Peng (1978)、汪萍(2004)和Li-Yang (2011)温度函数能够准确预测烷烃、芳烃、气体和卤代烃类物质的蒸汽压,但对弱极性和极性的醇、醚、酯、酸、水等物质的预测结果不如Forero (2016)温度函数准确。以偏心因子和极性因子普遍化的温度函数对醇、酸、水等极性物质蒸汽压的预测结果明显优于仅以偏心因子普遍化的温度函数。

关键词: 热力学性质, 状态方程, Peng-Robinson, 普遍化温度函数, 预测, 评价

Abstract:

17 generalized alpha functions for Peng-Robinson equation of state (PR EoS) were evaluated using the vapor pressures of 11 kinds of non-polar, weakly polar and polar compounds. The estimative abilities of the generalized alpha functions were compared according to the average absolute deviation of each kind of compounds. The results indicated that the vapor pressures of alkanes, aromatic hydrocarbons, gases and halogenated hydrocarbons can be accurately predicted with Robinson-Peng (1978), Wang (2004) and Li-Yang (2011) alpha function. However, the predictions of vapor pressures for weakly polar and polar compounds, such as alcohols, ethers, esters, acids, and water, with Robinson-Peng (1978), Wang (2004) and Li-Yang (2011) alpha function were less accurate than that predicted with Forero (2016) alpha function. In conclusion, the generalized alpha functions with acentric factor and polar factor as variables are more accurate than that generalized only with acentric factor for the prediction of vapor pressures of polar compounds, such as alcohols, acids and water.

Key words: thermodynamics properties, equation of state, Peng-Robinson, generalized alpha functions, prediction, evaluation

中图分类号: 

  • TQ 013.1

表1

用于评价的普遍化温度函数"

函数名称参考文献温度函数及参数关联式

Peng-Robinson (1976)

[4]

αTr=1+k1-Tr2

k=0.37464+1.54226ω-0.26992ω2

Robinson-Peng (1978)

[20]

αTr=1+k1-Tr2

k=0.37464+1.54226ω-0.26992ω2 asω0.491

k=0.379642+1.487503ω-0.164423ω2+0.016666ω3 asω>0.491

Gasem (2001)

[9]

α(Tr)=expA+BTr1-Trm

A=2,??B=0.836,?m=0.134+0.508ω-0.0467ω2

Coquelet (2004)[16]

aTr=1+c11-Tr+c21-Tr2?+c31-Tr32

c1=0.1316ω2+1.4031ω+0.3906

c2=-1.3127ω2+0.3015ω-0.1213

c3=0.7661ω+0.3041

汪萍(2004)[17]

aTr=1+k1-Tr2

k=k0+k11+Tr0.7-Tr? asTr0.7

k0=0.3784+1.5182ω-0.2663ω2+0.0923ω3

k1=-0.0035+0.0028ω+0.8369ω2-1.7359ω3+0.8325ω4

k=k0 asTr>0.7

Joshipura (2009)[22]

α(Tr)=expm1-Tr

m=1.2294ω+0.4887

Li-Yang (2011)[18]

αTr=exp?k11-Tr+lln?1+?k21-Tr2

l=0.81769

k1=0.13280-0.05052ω+0.25948ω2

k2=0.31355+1.86745ω-0.52604ω2

k3=0.38856+1.40137ω-0.05387ω2-0.01824ω3

Haghtalab (2011)[23]

αTr=exp1-nlnTr

n=1.7309+1.6571ω+0.1554ω2

Saffari-Zahedi (2013)[24]

αTr=exp?k1Tr+k2lnTr+k31-Tr

k1=0.003091+0.013145ω

k2=-0.006487+0.482173ω

k3=0.721306+3.586161ω

Hou (2015)[25]

αTr=exp?k1Tr+k2lnTr+k31-Tr

k1=0.0033+0.0113ω

k2=-0.0085+0.4106ω

k3=0.7532+3.541ω

Valiollahi (2016)[21]

αTr=1+k(1-Tr)21+F(T)×F(P)

k=0.3746+1.54226ω-0.26992ω2

FT=Tr-10.5

FP=f1f2+f3Pr+f4Pr2

f1=1.03×exp-exp9.3890-0.8524ρc

f2=3744.556×ρc-4.2525

f3=-568313.250×ρc-5.9531

f4=1166215.400×ρc-6.2409

Le Guennec (2016)[10]

α(Tr)=Tr2M-1expL1-Tr2M

L=0.0877+0.6039ω+0.1290ω2

M=0.8884-0.2600ω+0.1760ω2

Forero (2016)[19]

α(Tr)=exp?m1-Trn

n=γβ-1+β,m=β-1n

β=1.3469+1.4923ω+1.4252χ-0.1204ω2+2.8166χ2+0.3127ωχ

γ=-0.3759-1.4419ω+6.2044χ-0.6747ω2+15.586χ2-0.7058ωχ

χ=lgPrTr=0.6+1.7ω+1.552

Twu-Mahmoodi (2017)[11]

αTr=α0+ωα1-α0

α0=Tr2.8848(0.92291-1)exp0.06683(1-Tr2.8848×0.92291)

α0=Tr1.4636(0.87704-1)exp1.1744(1-Tr1.4636×0.87704)

Coquelet-Mahmoodi (2017)[11]

α(Tr)=exp?m11-Tr1+m21-Tr2+m31-Tr32

m1=0.40464+1.3361ω-0.07987ω2

m2=-0.08139+0.096493ω-0.85454ω2

m3=0.31953+0.001007ω-0.88858ω2

PR-PM (2017)[11]

αTr=exp2c11-Tr-c21-Tr2+23c31-Tr30c31.25c1

c1=0.36818+1.4801ω-0.14407ω2

c2=0.19422+1.9061ω-0.46577ω2

c3=1.514exp-ω-1.66451.54744

PR-PM2 (2017)[11]

αTr=exp2c11-Tr-c21-Tr2+23c11-Tr3

c1=0.3464+1.4886ω-0.13347ω2

c2=0.18339+1.8435ω-0.26929ω2

表2

11类物质基本信息"

物质类别中文名称数据点数蒸汽压数据参考文献
正构烷烃C1~C20、C22、C241434[28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45]
正构醇C1~C10、C12、C14、C16、C18826[29,46,47,48,49,50,51,52,53,54,55,56,57]
芳烃苯、甲苯、乙苯、二甲苯(邻、间、对)、萘、1-甲基萘559[34,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72]
卤代烃1,1-二氯-1-氟乙烷(R-141b)75[73,74]
气体氮气、氩、氪、氙、一氧化碳、氨404[28,75,76,77,78,79,80,81,82,83,84]
乙酸、丙酸66[85,86,87]
二甲醚、二丙醚、乙丙醚、甲基正丁基醚142[88,89,90,91]
丙酮47[92,93,94]
甲酸甲酯、乙酸甲酯、丙酸甲酯、丁酸甲酯、异丁酸甲酯、甲酸乙酯、乙酸乙酯、丙酸乙酯、甲酸丙酯、乙酸丙酯645[87,95,96,97,98]
杂环1,4-二66[99,100]
189[101]

图1

参数普遍化温度函数对不同类别物质蒸汽压预测结果的平均相对偏差"

图2

参数普遍化温度函数对正构烷烃蒸汽压预测结果的平均相对偏差"

图3

参数普遍化温度函数对正丁烷蒸汽压预测结果的相对偏差随对比温度变化趋势"

图4

参数普遍化温度函数对正构醇蒸汽压预测结果的平均相对偏差"

图5

参数普遍化温度函数对正丁醇蒸汽压预测结果的相对偏差随对比温度的变化趋势"

1 van der Waals J H.On the continuity of the gaseous and liquid state [D].Holland:Leiden University,1873.
2 Redlich O,Kwong J N S.On the thermodynamics of solutions(V): An equation of state. Fugacities of gaseous solutions [J].Chem. Rev.,1949,44(1):233-244.
3 Soave G.Equilibrium constants from a modified Redlich-Kwong equation of state [J].Chem. Eng. Sci.,1972,27(6):1197-1203.
4 Peng D Y,Robinson D B.A new two-constant equation of state [J].Ind. Eng. Chem. Fundam.,1976,15(1):59-64.
5 Mathias P M,Copeman T W.Extension of the Peng-Robinson equation of state to complex mixtures: evaluation of the various forms of the local composition concept [J].Fluid Phase Equilibr.,1983,13:91-108.
6 Stryjek R,Vera J H.An improved cubic equation of state.Equations of state [C]//ACS Symp.Ser.,1986:560-570.
7 Twu C H.A modified Redlich-Kwong equation of state for highly polar,supercritical systems [C]//Proc.Int.Symp. Thermodyn. Chem. Eng. Ind.,1988:148-169.
8 Twu C H,Bluck D,Cunningham J R,et al.A cubic equation of state with a new alpha function and a new mixing rule [J].Fluid Phase Equilibr.,1991,69(91):33-50.
9 Gasem K A M,Gao W,Pan Z,et al.A modified temperature dependence for the Peng-Robinson equation of state [J].Fluid Phase Equilibr.,2001,181(1):113-125.
10 Le Guennec Y,Privat R,Jaubert J N.Development of the translated-consistent tc-PR and tc-RK cubic equations of state for a safe and accurate prediction of volumetric, energetic and saturation properties of pure compounds in the sub- and super-critical domains [J].Fluid Phase Equilibr.,2016,429:301-312.
11 Mahmoodi P,Sedigh M.A consistent and precise alpha function for cubic equations of state [J].Fluid Phase Equilibr.,2017,436:69-84.
12 Pina-Martinez A,Le Guennec Y,Privat R,et al.Analysis of the combinations of property data that are suitable for a safe estimation of consistent twu α-function parameters: updated parameter values for the translated-consistent tc-PR and tc-RK cubic equations of state [J].J. Chem. Eng. Data,2018,63(10):3980-3988.
13 Ghoderao P N P,Dalvi V H,Narayan M.A five-parameter cubic equation of state for pure fluids and mixtures [J].Chem. Eng. Sci.: X,2019,3:100026.
14 Zhao W,Sun X,Xia L,et al.Research into the polynomial alpha function for the cubic equation of state [J].Ind. Eng. Chem. Res.,2018,57(38):12602-12623.
15 Twu C H,Coon J E,Cunningham J R.An approach for the extension of a 3-parameter cubic equation of state to heavy hydrocarbons [J].Fluid Phase Equilibr.,1995,104:83-96.
16 Coquelet C,Chapoy A,Richon D.Development of a new alpha function for the Peng-Robinson equation of state: comparative study of alpha function models for pure gases (natural gas components) and water-gas systems [J].Int. J. Thermophys.,2004,25(1):133-158.
17 汪萍,李忠杰,项曙光.低对比温度下PRSV方程的新温度函数关联式[J].石油化工,2004,33(10):951-955.
Wang P,Li Z J,Xiang S G.A new alpha function of PRSV equation at low relative temperatures [J].Petrochem. Tech.,2004,33(10):951-955.
18 Li H,Yang D.Modified α function for the Peng-Robinson equation of state to improve the vapor pressure prediction of non-hydrocarbon and hydrocarbon compounds [J].Energ. Fuel.,2011,25(1):1-4.
19 Forero L A,Velasquez J A.A generalized cubic equation of state for non-polar and polar substances [J].Fluid Phase Equilibr.,2016,418:74-87.
20 Robinson D B,Peng D Y.The Characterization of the Heptanes and Heavier Fractions for the GPA Peng-Robinson Programs [M].US:Gas Processors Association,1978.
21 Valiollahi S,Kavianpour B,Raeissi S,et al.A new Peng-Robinson modification to enhance dew point estimations of natural gases [J]. J. Nat. Gas Sci. Eng.,2016,34:1137-1147.
22 Joshipura M H,Dabke S P,Subrahmanyam N.Development and comparison of cohesion function relationship for PR equation of state [J].Int. J. Chem. Eng. Res.,2009,1(2):123-134.
23 Haghtalab A,Mahmoodi P,Mazloumi S H.A modified Peng-Robinson equation of state for phase equilibrium calculation of liquefied, synthetic natural gas, and gas condensate mixtures [J].Can. J. Chem. Eng.,2011,89(6):1376-1387.
24 Saffari H,Zahedi A.A new alpha-function for the Peng-Robinson equation of state application to natural gas [J].Chinese J. Chem. Eng.,2013,21(10):1155-1161.
25 Hou D,Deng H,Zhang H,et al.Phase behavior and physical parameters of natural gas mixture with CO2 [J].J. Chem.,2015,2015:1-11.
26 Heyen G.A cubic equation of state with extended range of application[C]//Proceeding of the 2nd World Congress of Chemical Engineering.Montreal, Canada,1981.
27 Yaws C L.Thermophysical Properties of Chemicals and Hydrocarbons [M].Holland:Elsevier Science,2008.
28 Salerno S,Cascella M,May D,et al.Prediction of vapor pressures and saturated volumes with a simple cubic equation of state(I): A reliable data base [J].Fluid Phase Equilibr.,1986,27(86):15-34.
29 Sage B H,Lacey W N.Phase equilibria in hydrocarbon systems-thermodynamic properties of pentane [J].Ind. Eng. Chem.,1942,34:730-737.
30 Straty G C,Tsumura R.PVT and vapor pressure measurements on ethane [J]. J. Res. Nat. Bur. Stand.,1976,80A(1):35-39.
31 Sasse K,Jose J,Merlin J C.A static apparatus for measurement of low vapor pressures. Experimental results on high molecular-weight hydrocarbons [J].Fluid Phase Equilibr.,1988,42(8):287-304.
32 Wolff H,Shadiakhy A.The vapor pressure behavior and association of mixtures of 1-hexanol andn-hexane between 293 and 373 K [J].Fluid Phase Equilibr.,1981,7(3/4):309-325.
33 Bich E,Lober T,Millat J.Quasi-isochoric PPT measurements, 2nd virial coefficient and vapor pressure ofn-hexane [J].Fluid Phase Equilibr.,1992,75:149-161.
34 Ewing M B,Sanchez Ochoa J C.Vapour pressures ofn-hexane determined by comparative ebulliometry [J].J. Chem. Thermophys.,2006,38(3):283-288.
35 Dahmani A,Ait Kaci A,Jose J.Vapor pressures and excess functions of 1,4-dimethylpiperazine +n-heptane, or cyclohexane measurement and prediction [J].Fluid Phase Equilibr.,1997,134(1/2):255-265.
36 Forziati A F,Norris W R,Rossini F D.Vapor pressures and boiling points of sixty API-NBS hydrocarbons [J].J. Res. Nat. Bur. Stand.,1949,43:555-563.
37 Reddy P,Raal J D,Ramjugernath D.A novel dynamic recirculating apparatus for vapour-liquid equilibrium measurements at moderate pressures and temperatures [J].Fluid Phase Equilibr.,2013,358:121-130.
38 Weber L A.Vapor pressure of heptane from the triple point to the critical point [J].J. Chem. Eng. Data,2000,45(2):173-176.
39 Ewing M B,Sanchez Ochoa J C.Vapor pressures ofn-heptane determined by comparative ebulliometry [J].J. Chem. Eng. Data,2005,50(5):1543-1547.
40 Ewing M B,Sanchez Ochoa J C.The vapour pressures ofn-octane determined using comparative ebulliometry [J].Fluid Phase Equilibr.,2003,210(2):277-285.
41 Gregorowicz J,Kiciak K,Malanowski S.Vapor pressure data for 1-butanol, cumene,n-octane andn-decane and their statistically consistent reduction with the antoine equation [J].Fluid Phase Equilibr.,1987,38(1/2):97-107.
42 Allemand N,Jose J,Merlin J C.Vapor pressures of hydrocarbons (C10-C18 alkanes and alkylbenzenes) at 3-1000 Pa [J].Thermochim. Acta,1986,105:79-90.
43 Morgan D L,Kobayashi R.Direct vapor pressure measurements of tenn-alkanes in the C10-C28 range [J].Fluid Phase Equilibr.,1994,97(1/2):211-242.
44 Lee C H,Dempsey D M,Mohamed R S,et al.Vapor-liquid equilibria in the systems ofn-decane/tetralin,n-hexadecane/tetralin,n-decane/1-methylnaphthalene, and 1-methylnaphthalene/tetralin [J].J. Chem. Eng. Data,1992,37(2):183-186.
45 马沛生.石油化工基础数据手册(续编)[M].北京:化学工业出版社,1993.
Ma P S.Handbook of Petrochemical Basic Data (Sequel Edition) [M].Beijing:Chemical Industry Press,1993.
46 Ambrose D,Sprake C H S.Thermodynamic properties of organic oxygen compounds():Vapor pressures and normal boiling temperatures of aliphatic alcohols [J].J. Chem. Thermodyn.,1970,2(5):631-645.
47 Nasirzadeh K,Neueder R,Kunz W.Vapor pressure determination of the aliphatic C5 to C8 1-alcohols [J].J. Chem. Eng. Data,2006,51(1):7-10.
48 Munday E B,Mullins J C,Edie D D.Vapor pressure data for toluene, 1-pentanol, 1-butanol, water, and 1-propanol and for the water and 1-propanol system from 273.15 to 323.15 [J].J. Chem. Eng. Data,1980,25(3):191-194.
49 Kemme H R,Kreps S I.Vapor pressure of primaryn-alkyl chlorides and alcohols [J].J. Chem. Eng. Data,1969,14(1):98-102.
50 Efremov Y V.Density, surface tension, saturated vapor pressures, and critical parameters of alcohols [J].Russ. J. Phys. Chem. A,1966,40(6):1240-1247.
51 Ambrose D,Townsend R.Thermodynamic properties of organic oxygen compounds(Ⅸ): The critical properties and vapor pressures, above five atmospheres, of six aliphatic alcohols [J].J. Chem. Soc.,1963,681:3614-3625.
52 Ambrose D,Sprake C H S,Townsend R.Thermodynamic properties of organic oxygen compounds(ⅩⅩⅩⅦ): Vapor pressures of methanol, ethanol, pentan-1-ol, and octan-1-ol from the normal boiling temperature to the critical temperature [J].J. Chem. Thermodyn.,1975,7(2):185-190.
53 Roganov G N,Pisarev P N,Emel'yanenko V N,et al.Measurement and prediction of thermochemical properties. Improved benson-type increments for the estimation of enthalpies of vaporization and standard enthalpies of formation of aliphatic alcohols [J].J. Chem. Eng. Data,2005,50(4):1114-1124.
54 Censky M,Rohac V,Ruzicka K,et al.Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 1 [J].Fluid Phase Equilibr,2010,298(2):192-198.
55 N'guimbi J,Kasehgari H,Mokbel I,et al.Vapor pressure of primary alcohols at 0.3 Pa to 1.5 kPa [J].Thermochim. Acta,1992,196(2):367-377.
56 Ambrose D,Ellender J H,Sprake C H S.Thermodynamic properties of organic oxygen compounds(ⅩⅩⅩⅤ):Vapor pressures of aliphatic alcohols[J].J. Chem. Thermodyn.,1974,6(9):909-914.
57 Naziev Y M,Shakhverdiev A N,Akhundov T S,et al.Thermal properties of undecyl and dodecyl alcohols [J].Izv. Vyssh. Uchebn. Zaved.,1990, (12):69-72.
58 Fiock E F,Ginning D C,Holton W B.Calorimetric determinations of thermal properties of methyl alcohol, ehtyl alcohol, and benzene [J].Bur. Stand. J. Res.,1931,6:881-900.
59 Butcher K L,Ramasubramanian K R,Medani M S.Thermodynamic properties of the benzene andn-heptane system at elevated temperatures [J].J. App. Chem. Biotech.,1972,22(11):1139-1155.
60 Ambrose D.Vapor pressures of some aromatic hydrocarbons [J].J. Chem. Thermodyn.,1987,19(9):1007-1008.
61 Kalafati D D,Rasskazov D S,Petrov E K.Determination of the temperature dependence of the saturation pressure of benzene [J].Zh. Fiz. Khim.,1967,41(6):1357-1359.
62 de Kruif C G,Kuipers T,van Miltenburg J C,et al.The vapor pressure of solid and liquid naphthalene [J].J. Chem. Thermodyn.,1981,13(11):1081-1086.
63 Chirico R D,Knipmeyer S E,Nguyen A,et al.The thermodynamic properties to the temperature 700 K of naphthalene and of 2,7-dimethylnaphthalene [J].J. Chem. Thermodyn.,1993,25(12):1461-1494.
64 Schroer E.Critical state(Ⅵ): Vapor-pressure curve of naphthalene up to the critical point [J]. Z. Physik. Chem.,1941, B49:271-278.
65 Wieczorek S A,Kobayashi R.Vapor-pressure measurements of 1-methylnaphthalene, 2-methylnaphthalene, and 9,10-dihydrophenanthrene at elevated temperatures[J].J. Chem. Eng. Data,1981,26(1):8-11.
66 Chirico R D,Knipmeyer S E,Nguyen A,et al.Thermodynamic equilibria in xylene isomerization(4): The thermodynamic properties of ethylbenzene [J].J. Chem. Eng. Data,1997,42(4):772-783.
67 Vonniederhausern D M,Wilson G M,Giles N F.Critical point and vapor pressure measurements at high temperatures by means of a new apparatus with ultralow residence times [J].J. Chem. Eng. Data,2000,45(2):157-160.
68 Pitzer K S,Scott D W.The thermodynamics and molecular structure of benzene and its methyl derivatives[J].J. Am. Chem. Soc.,1943,65:803-829.
69 Hugill J A,Mcglashan M L.The vapor pressure from 451 K to the critical temperature, and the critical temperature and critical pressure, of cyclohexane [J].J. Chem. Thermodyn.,1978,10(1):95-100.
70 Mokbel I,Rauzy E,Meille J P,et al.Low vapor pressures of 12 aromatic hydrocarbons. Experimental and calculated data using a group contribution method [J].Fluid Phase Equilibr.,1998,147(1/2):271-284.
71 Lee C H,Holder G D.Vapor-liquid equilibria in the systems toluene/naphthalene and cyclohexane/naphthalene [J].J. Chem. Eng. Data,1993,38(2):320-323.
72 Watanabe N,Yokoyama C,Takahashi S.PVT relationship of gaseous toluene at temperatures from 500 K to 600 K [J].Kagaku. Kogaku. Ronbunshu.,1988,14(4):525-530.
73 Duarte-Garza H A,Hwang C A,Kellerman S A,et al.Vapor pressure, vapor density, and liquid density for 1,1-dichloro-1-fluoroethane (R-141b) [J].J. Chem. Eng. Data,1997,42(3):497-501.
74 Defibaugh D R,Goodwin A R H,Morrison G,et al.Thermodynamic properties of 1,1-dichloro-1-fluoroethane (R141b) [J].Fluid Phase Equilibr.,1993,85:271-284.
75 Zhao Y,Dong X,Gong M,et al.Apparatus for low-temperature investigations: phase equilibrium measurements for systems containing ammonia [J].J. Chem. Eng. Data,2016,61(11):3883-3889.
76 Sato M,Masui G,Uematsu M.Critical parameters for ammonia [J].J. Chem. Thermodyn.,2005,37(9):931-934.
77 Kasahara K,Munakata T,Uematsu M.(P,ρ,T) measurements of liquid ammonia in the temperature range fromT = 310 K toT = 400 K at pressures up toP = 17 MPa [J].J. Chem. Thermodyn.,1999,31(10):1273-1281.
78 Streatfeild M H,Henderson C,Staveley L A K,et al.Some thermodynamic properties of liquid ammonia and trideuteroammonia [J].J. Chem. Thermodyn.,1987,19(11):1163-1171.
79 Holcomb C D,Outcalt S L.Near-saturation (P, ρ, T) and vapor-pressure measurements of NH3, and liquid-phase isothermal (P, ρ, T) and bubble-point-pressure measurements of NH3 + H2O mixtures [J].Fluid Phase Equilibr.,1999,164(1):97-106.
80 Wagner W.New vapor pressure measurements for argon and nitrogen and a new method for establishing rational vapor pressure equations [J].Cryogenics,1973,13(8):470-482.
81 Bowman D H,Aziz R A,Lim C C.Vapor pressure of liquid argon, krypton, and xenon [J].Can. J. Phys.,1969,47(3):267-273.
82 Shinoda T.Vapor pressure of carbon monoxide in condensed phases [J].Bullchemsocjpn,1969,42(10):2815-2820.
83 Theeuwes F,Bearman R J.P,V,T behavior of dense fluids(Ⅴ): Vapor pressure and saturated liquid density of xenon [J].J. Chem. Thermodyn.,1970,2(4):507-512.
84 Crommelin C A,Bijleveld W J,Brown E G.Vapor tensions, critical point and triple point of carbon monoxide [J].Proc. K. Ned. Akad. Wet.,1931,34:1314-1317.
85 Potter A E,Ritter H L.The vapor pressure of acetic acid and acetic-d3 acid-d. The liquid density of acetic-d3 acid-d [J].J. Phys. Chem.,1954,58:1040-1042.
86 Ambrose D,Ellender J H,Sprake C H S,et al.Thermodynamic properties of organic oxygen compounds(ⅩLⅤ): The vapor pressure of acetic acid [J].J. Chem. Thermodyn.,1977,9(8):735-741.
87 Ambrose D,Ellender J H,Gundry H A,et al.Thermodynamic properties of organic oxygen compounds. LI. The vapor pressures of some esters and fatty acids [J].J. Chem. Thermodyn.,1981,13(8):795-802.
88 Wu J,Yin J.Vapor pressure measurements of dimethyl ether from (213 to 393) K [J].J. Chem. Eng. Data,2008,53(9):2247-2249.
89 Tanaka K,Higashi Y.Measurements of the isobaric specific heat capacity and density for dimethyl ether in the liquid state [J].J. Chem. Eng. Data,2010,55(8):2658-2661.
90 Ambrose D,Sprake C H S,Townsend R.Thermodynamic properties of organic oxygen compounds(ⅩⅪⅩ): Vapor pressure of diethyl ether [J].J. Chem. Thermodyn.,1972,4(2):247-254.
91 Ambrose D,Ellender J H,Sprake C H S,et al.Thermodynamic properties of organic oxygen compounds(ⅩLⅢ): Vapor pressures of some ethers [J].J. Chem. Thermodyn.,1976,8(2):165-178.
92 Ambrose D,Sprake C H S,Townsend R.Thermodynamic properties of organic oxygen compounds(ⅩⅩ ): Vapor pressure of acetone [J].J. Chem. Thermodyn.,1974,6(7):693-700.
93 Silberberg I H,Mcketta J J,Kobe K A.Compressibility of isopentane with the burnett apparatus [J].J. Chem. Eng. Data,1959,4(4):323-329.
94 Kobe K A,Crawford H R,Stephenson R W.Critical properties and vapor pressures of some ketones [J].Ind. Eng. Chem. Res.,1955,47:1767-1772.
95 Young S,Thomas G L.The vapour pressures, molecular volumes, and critical constants of ten of the lower esters [J]. J. Chem. Soc. Faraday Trans.,1893,63:1191-1262.
96 Polak J,Mertl I.Saturated vapor pressure of methyl acetate, ethyl acetate, propyl acetate, methyl propionate, and ethyl propionate [J].Collect. Czech. Chem. Commun.,1965,30(10):3526-3528.
97 Susial P,Susial R,Estupinan E J,et al.Determination and thermodynamic evaluation of isobaric VLE of methyl acetate or ethyl acetate with 2-propanol at 0.3 and 0.6 MPa [J].Fluid Phase Equilibr.,2014,375:1-10.
98 Mathews J H,Faville K E.Physical properties of a number of pure esters [J].J. Phys. Chem.,1918,22:1-22.
99 Lepori L,Matteoli E,Gianni P.Vapor pressure and its temperature dependence of 28 organic compounds: cyclic amines, cyclic ethers, and cyclic and open chain secondary alcohols [J].J. Chem. Eng. Data,2017,62(1):194-203.
100 Vinson C G,Martin J J.Heat of vaporization and vapor pressure of 1,4-dioxane [J].J. Chem. Eng. Data,1963,8(1):74-75.
101 Wagner W.The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use [J]. J. Phys. Chem. Ref. Data,2002,31(2):387-535.
[1] 谭畯坤, 刘玉东, 耿世超, 陈兵, 童明伟. 真空探针冷冻和复温性能实验测试及数值模拟[J]. 化工学报, 2020, 71(4): 1440-1449.
[2] 王乐乐, 戴源德, 田思瑶, 林秦汉. R290在小管径水平微肋管内沸腾传热的实验研究[J]. 化工学报, 2020, 71(3): 1026-1034.
[3] 蔡涛, 杨博, 李宏光. 基于时延挖掘模糊时间认知图的化工过程多变量时序预测方法[J]. 化工学报, 2020, 71(3): 1095-1102.
[4] 罗小燕, 戴聪聪, 程铁栋, 蔡改贫, 刘鑫, 刘吉顺. 基于改进EWT-多尺度熵和KELM的球磨机负荷识别方法[J]. 化工学报, 2020, 71(3): 1264-1277.
[5] 杜宇浩, 阎高伟, 李荣, 王芳. 基于局部线性嵌入的测地线流式核多工况软测量建模方法[J]. 化工学报, 2020, 71(3): 1278-1287.
[6] 关宏伟, 叶凌箭, 沈非凡, 顾德, 宋执环. 基于经济模型预测控制的金氰化浸出过程动态实时优化[J]. 化工学报, 2020, 71(3): 1122-1130.
[7] 何德峰, 张永达, 李廉明, 仇翔. 循环流化床燃烧系统无终端约束字典序经济预测控制[J]. 化工学报, 2020, 71(3): 1210-1216.
[8] 田洲, 焦栋, 王金强, 刘柏平. 序列分布导向的CGC催化乙烯与1-辛烯共聚过程建模[J]. 化工学报, 2020, 71(2): 651-659.
[9] 邢瑞, 江南, 刘冰, 安亚雄, 汪亚燕, 张东辉. 基于MPC控制技术优化VPSA制氧工艺的模拟[J]. 化工学报, 2020, 71(2): 669-679.
[10] 屈绍广, 王昶昊, 施云海, 彭昌军, 刘洪来, 胡英. 基团贡献状态方程的开发与热力学模型参数的理论预测[J]. 化工学报, 2020, 71(1): 200-208.
[11] 李涛, 沙娇, 赵瑞, 张鹏帅, 刘士琪, 李玉, 任保增. 双季戊四醇在3种混合溶剂中的固-液相平衡[J]. 化工学报, 2020, 71(1): 245-253.
[12] 李春喜. 离子液体的溶液热力学模型研究进展[J]. 化工学报, 2020, 71(1): 81-91.
[13] 吴杰, 李嘉辉, 于燕梅, 于养信. 第Ⅲ族元素磷化物热力学性质理论研究[J]. 化工学报, 2020, 71(1): 192-199.
[14] 孙艳军, 邸高雷, 夏娟, 王晓坡, 龚娜. 不同冷冻润滑油对HFO1234yf溶解吸收特性的研究[J]. 化工学报, 2019, 70(S2): 25-30.
[15] 唐振浩,张宝凯,曹生现,王恭,赵波. 基于多模型智能组合算法的锅炉炉膛温度建模[J]. 化工学报, 2019, 70(S2): 301-310.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 童东革;赖琼鈺;吉晓洋.

废旧锂离子电池正极材料钴酸锂的回收

[J]. CIESC Journal, 2005, 56(10): 1967 -1970 .
[2] 沈树宝,汪绍崑,张菊珍,时钧. 色谱斜率法测过量自由焓之模型参数的研究 [J]. CIESC Journal, 1986, 37(2): 140 -150 .
[3] 蔡新兵,叶大陆. 双层乳状液膜一次萃取的扰动与幂级数联合解——传质过程中乳状液膜破裂的作用 [J]. CIESC Journal, 1989, 40(6): 761 -766 .
[4] 屈红强;武伟红;焦运红;徐建中 .

氧化锌和氢氧化物对软聚氯乙烯阻燃性能的影响

[J]. CIESC Journal, 2006, 57(5): 1259 -1263 .
[5] 温志敏,朱长新,周芳德. 对流循环和滑移汽泡机制在管束核态沸腾换热中的影响 [J]. CIESC Journal, 1994, 45(1): 45 -50 .
[6] 李佟茗,贾绍义. 表面粘度对小气泡聚并的影响 [J]. CIESC Journal, 1995, 46(5): 532 -538 .
[7] 文梅,杨义燕,戴猷元,汪家鼎. 三辛胺萃取有机羧酸的机理(Ⅰ)──三辛胺-醋酸体系 [J]. CIESC Journal, 1998, 49(3): 303 -309 .
[8] 胡瓅元;时铭显.

蜗壳式旋风分离器内的湍流特性(Ⅱ)环形空间

[J]. CIESC Journal, 2004, 55(3): 351 -355 .
[9] 周定伟; 马重芳; 刘登瀛. 强润湿性液体在圆形断面喷嘴浸没射流冲击下沸腾的热滞后 [J]. CIESC Journal, 2001, 52(11): 1000 -1005 .
[10] 褚文娟,丁雪佳,张德强,袁 园,张丽娟,韩海军. 羧基丁腈胶粉改性热塑性聚酯弹性体的性能 [J]. CIESC Journal, 2010, 29(11): 2130 .