化工学报 ›› 2020, Vol. 71 ›› Issue (7): 3387-3392.doi: 10.11949/0438-1157.20191526

• 过程安全 • 上一篇    

全氟三乙胺和全氟己酮混合气体的灭火效果研究

梁天水(),刘德智,王永锦,钟委(),赵军   

  1. 郑州大学力学与安全科学学院,河南 郑州 450001
  • 收稿日期:2019-12-16 修回日期:2020-01-20 出版日期:2020-07-05 发布日期:2020-07-09
  • 通讯作者: 钟委 E-mail:liangtsh@zzu.edu.cn;zhongwei@zzu.edu.cn
  • 作者简介:梁天水(1981—),男,博士,副教授,liangtsh@zzu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51874258);河南省高等学校青年骨干教师培养计划(2018GGJS002)

Study on fire extinguishing efficiency of the mixtures of C6F12O and (C2F5)3N

Tianshui LIANG(),Dezhi LIU,Yongjin WANG,Wei ZHONG(),Jun ZHAO   

  1. School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
  • Received:2019-12-16 Revised:2020-01-20 Online:2020-07-05 Published:2020-07-09
  • Contact: Wei ZHONG E-mail:liangtsh@zzu.edu.cn;zhongwei@zzu.edu.cn

摘要:

全氟己酮是一种新型的哈龙替代灭火介质,但是研究人员发现全氟己酮在低浓度时具有助燃效果,未通过美国联邦航空局气溶胶爆炸实验(FAA-ACT)。为抑制全氟己酮的助燃效果,采用混合气体的方法,引入全氟三乙胺作为全氟己酮的协同灭火介质。首先利用杯式燃烧器研究不同浓度全氟己酮作用下的火焰高度、火焰宽度,并获取其临界灭火浓度;以火焰高度和火焰宽度作为助燃现象的判据,实验结果表明全氟己酮浓度为3.00%(占氧化剂体积分数,下同)左右时助燃现象最为显著,临界灭火浓度为5.80%。为研究全氟三乙胺抑制全氟己酮助燃现象的效果,在保持全氟己酮浓度3.00%不变的条件下,逐渐增加全氟三乙胺的浓度,获取火焰高度、火焰脉动频率和混合气体的临界灭火浓度变化趋势;结果表明全氟三乙胺对全氟己酮的助燃现象有抑制作用,且预测全氟三乙胺单独作用下的临界灭火浓度约为4.86%。全氟己酮和全氟三乙胺的混合灭火气体中,全氟三乙胺占灭火剂体积分数超过10.00%后,全氟己酮和全氟三乙胺具有较好的协同灭火效果。

关键词: 安全, 全氟己酮, 全氟三乙胺, 哈龙替代物, 临界灭火浓度

Abstract:

C6F12O is one of halon alternatives for fire extinguishing. However, researchers found that C6F12O has a combustion enhancement phenomenon at its low concentrations. The defect may bring some harms in the process of firefighting, and may limit its application in some scenario. To suppress the combustion enhancement effect of C6F12O, this article adopts the method of mixed gas and introduces perfluorotriethylamine (C2F5)3N as a cooperative fire extinguishing agent with C6F12O. Firstly, the cupburner experiment was used to obtain the flame height and flame width at different concentrations of C6F12O, and the minimum extinguishing concentration (MEC) of C6F12O was obtained as well. The flame height and flame width were used as the criterion for the combustion enhancement phenomenon. The results show that the most obvious enhancement is observed at the concentration of around 3.00% (volume fraction, the same below); and the MEC of C6F12O is about 5.80%. Secondly, the experiment on the effect of (C2F5)3N in suppressing the combustion enhancement was conducted. In this test, the volume fraction of C6F12O was maintained at 3.00%; then (C2F5)3N was added and gradually increased. The MEC of the mixture, the flame height and the flame pulsation frequency were obtained. The results show that (C2F5)3N has the ability to inhibit the combustion enhancement, that the MEC of (C2F5)3N is about 4.86%.In the mixed fire extinguishing gas of perfluorohexanone and perfluorotriethylamine, after the volume fraction of perfluorotriethylamine exceeds 10.00%, perfluorohexanone and perfluorotriethylamine have a better synergistic fire extinguishing effect.

Key words: safety, perfluorohexanone, perfluorotriethylamine, halon alternative, MEC

图1

实验装置示意图"

图2

不同浓度全氟己酮火焰高度、火焰宽度"

图3

全氟三乙胺作用下的火焰高度、火焰宽度(全氟己酮浓度为3.00%)"

图4

全氟己酮与全氟三乙胺混合气体临界灭火浓度"

图5

全氟己酮与全氟三乙胺作用下的火焰频率"

1 Takahashi F, Katta V R, Linteris G T, et al. A computational study of extinguishment and enhancement of propane cup-burner flames by halon and alternative agents[J]. Fire Safety Journal, 2017, 91(7): 688-694.
2 Takahashi F, Katta V R, Linteris G T, et al. Combustion inhibition and enhancement of cup-burner flames by CF3Br, C2HF5, C2HF3Cl2, and C3H2F3Br[J]. Proceedings of the Combustion Institute, 2015, 35(3): 2741-2748.
3 Linteris G T, Takahashi F, Katta V R. Cup-burner flame extinguishment by CF3Br and Br2[J]. Combustion & Flame, 2007, 149(1/2): 91-103.
4 陈涛, 卢大勇, 胡成, 等. 全氟己酮灭火剂临界灭火浓度测试研究[J]. 消防科学与技术, 2015, 34(9): 1210-1214.
Chen T, Lu D Y, Hu C, et al. Test study on critical extinguishing concentration of perfluorohexanone fire extinguishing agent[J]. Fire Science and Technology, 2015, 34(9): 1210-1214.
5 Taniguchi N, Wallington T J, Hurley M D, et al. Atmospheric chemistry of C2F5C(O)CF(CF3)(2): Photolysis and reaction with Cl atoms, OH radicals, and ozone[J]. The Journal of Physical Chemistry A, 2003, 107(15): 2674-2679.
6 Jackson D A, Young C J, Hurley M D, et al. Atmospheric degradation of perfluoro-2-methyl-3-pentanone: photolysis, hydrolysis and hydration[J]. Environmental Science and Technology, 2011, 45(19): 8030-8036.
7 Ditch B D, Rivers P E, Thomas S D. Thermal decomposition products testing with C6F-ketone[C]// Proceedings of Halon Options Technical Working Conference. Albuquerque, 2001: 24-26.
8 Pagliaro J L, Linteris G T, Sunderland P B, et al. Combustion inhibition and enhancement of premixed methane–air flames by halon replacements[J]. Combustion and Flame, 2015, 162(1): 41-49.
9 Linteris G T, Burgess D R, Takahashi F, et al. Stirred reactor calculations to understand unwanted combustion enhancement by potential halon replacements[J]. Combustion and Flame, 2012, 159(3): 1016-1025.
10 Babushok V I, Linteris G T, Meier O C. Combustion properties of halogenated fire suppressants[J]. Combustion and Flame, 2012, 159(12): 3569-3575.
11 Lott J L, Christian S D, Sliepcevich C M, et al. Synergism between chemical and physical fire-suppressant agents[J]. Fire Technology, 1996, 32(3): 260-271.
12 Saso Y, Ogawa Y, Saito N, et al. Binary CF3Br- and CHF3-inert flame suppressants: effect of temperature on the flame inhibition effectiveness of CF3Br and CHF3[J]. Combustion and Flame, 1999, 118(3): 489-499.
13 Zou Y, Vahdat N, Collins M. Fire protection with bromoalkene/nitrogen gaseous mixtures[J]. Industrial & Engineering Chemistry Research, 2001, 40(21): 4649-4653.
14 Valeri I. Babushok R E, Tapscott R S, et al. Alternative fire suppressant chemicals: a research review with reccomendations[R]. 2001: NIST-1443.
15 Fukaya H. Evaluation of fire suppression ability of perfluoroalkylamines by cup burner method[J]. Journal of Fluorine Chemistry, 1999, 94(2): 205-206.
16 Takahashi F, Katta V R, Linteris G T, et al. Cup-burner flame structure and extinguishment by CF3Br and C2HF5 in microgravity[J]. Proceedings of the Combustion Institute, 2013, 34(2): 2707-2717.
17 Linteris G T, Katta V R, Takahashi F. Experimental and numerical evaluation of metallic compounds for suppressing cup-burner flames[J]. Combustion and Flame, 2004, 138(1/2): 78-96.
18 梁天水, 王宗莹, 高坤, 等. 基于cup burner的含铁基添加剂超细水雾灭火有效性分析[J]. 化工学报, 2019, 70(3): 1236-1242.
Liang T S, Wang Z Y, Gao K, et al. Analysis of fire suppression effectiveness of ultra-fine water mist containing iron compounds additives in cup burner[J]. CIESC Journal, 2019, 70(3): 1236-1242.
19 Tianshui L, Runwan L, Jing L, et al. Extinguishment of hydrocarbon pool fires by ultrafine water mist with ammonium/amidogen compound in an improved cup burner[J]. Fire and Materials, 2018, 42(8): 889-896.
20 ISO14520. Gaseous fire-extinguishing systems—physical properties and system design[S]. 2016.
21 Zhang Y F, Lin L, Jin X, et al. Fire-extinguishing effectiveness of 1-bromo-3, 3, 3-trifluoropropene/inert gaseous mixture evaluated by cup burner method[J]. Process Safety and Environmental Protection, 2007, 85(2): 147-152.
22 Zou Y, Vahdat N, Collins M. Fire extinguishing ability of 1-bromo-1-propane and 1-methoxynonafluorobutane evaluated by cup burner method[J]. Journal of Fluorine Chemistry, 2001, 28(1): 33-40.
23 Hirst R, Booth K. Measurement of flame-extinguishing concentrations[J]. Fire Technology, 1977, 13(4): 296-315.
24 Linteris G T, Babushok V I, Sunderland P B, et al. Unwanted combustion enhancement by C6F12O fire suppressant[J]. Proceedings of the Combustion Institute, 2013, 34(2): 2683-2690.
25 Takahashi K, Sekiuji Y, Yamamori Y, et al. Kinetic studies on the reactions of CF3 with O(3P) and H atoms at high temperatures[J]. The Journal of Physical Chemistry A, 1998, 102(43): 8339-8348.
26 Linteris G T, Truett L. Inhibition of premixed methane-air flames by fluoromethanes[J]. Combustion & Flame, 1996, 105(1/2): 15-27.
27 Linteris G T, Burgess D R, Babushok V, et al. Inhibition of premixed methane–air flames by fluoroethanes and fluoropropanes[J]. Combustion and Flame, 1998, 113(1/2): 164-180.
28 Hynes R G, Mackie J C, Masri A R. Inhibition of premixed hydrogen-air flames by 2-H heptafluoropropane[J]. Combustion & Flame, 1998, 113(4): 554-565.
29 Babushok V I, Linteris G T, Meier O C. Combustion properties of halogenated fire suppressants[J]. Combustion and Flame, 2012, 159(12): 3569-3575.
30 Wang X Y, Wu R, Cheng L, et al. Suppression of propane cup-burner flame with HFO-1336mzz(Z) and its thermal stability study[J]. Thermochimical Acta, 2019, 683: 178463.
[1] 李玉, 徐春明, 韩帅, 李鸿烨. 火灾条件下拱顶油罐弱连接结构的失效分析[J]. 化工学报, 2020, 71(7): 3372-3378.
[2] 邓明月, 刘建昌, 许鹏, 谭树彬, 商亮亮. 基于KECA的非线性工业过程故障检测与诊断新方法[J]. 化工学报, 2020, 71(5): 2151-2163.
[3] 罗振敏, 杨勇, 程方明, 王涛, 常助川, 苏彬, 张蔓. N2和CO2惰化丙烯爆炸极限参数实验研究[J]. 化工学报, 2020, 71(4): 1922-1928.
[4] 叶昊天, 董以宁, 许爽, 邹雄, 李振花, 董宏光. 考虑本质安全的换热网络多目标优化[J]. 化工学报, 2019, 70(7): 2584-2593.
[5] 张明振, 黄冬梅, 胡毅伟, 原琪, 席合一, 沈利铭, 段鹏征. 点火位置对乳胶泡沫水平火蔓延规律的影响[J]. 化工学报, 2019, 70(7): 2802-2810.
[6] 雷兴国, 王庆锋, 李中. 基于合作博弈的管道外腐蚀多层次灰色动态评价[J]. 化工学报, 2019, 70(6): 2386-2396.
[7] 梁天水, 王宗莹, 高坤, 李润婉, 王铮, 钟委, 赵军. 基于cup burner的含铁基添加剂超细水雾灭火有效性分析[J]. 化工学报, 2019, 70(3): 1236-1242.
[8] 彭开香, 张传放, 马亮, 董洁, 焦瑞华, 唐鹏. 面向系统层级的复杂工业过程全息故障诊断[J]. 化工学报, 2019, 70(2): 590-598.
[9] 窦珊, 张广宇, 熊智华, 王焕钢. 基于多源数据融合的化工园区危险态势感知[J]. 化工学报, 2019, 70(2): 460-466.
[10] 戴波, 周泽彧, 张岩, 林双双, 刘学君. 危化品仓储堆垛安全距离监测系统设计[J]. 化工学报, 2019, 70(2): 707-715.
[11] 江升, 旷天亮, 李秀喜. 基于稀疏过滤特征学习的化工过程故障检测方法[J]. 化工学报, 2019, 70(12): 4698-4709.
[12] 孟祥坤, 陈国明, 郑纯亮, 吴翔飞, 朱高庚. 基于风险熵和复杂网络的深水钻井井喷事故风险演化评估[J]. 化工学报, 2019, 70(1): 388-397.
[13] 丁炯, 陈琪, 许启跃, 杨遂军, 叶树亮. 融合C80数据的绝热加速量热法热惯量因子修正[J]. 化工学报, 2019, 70(1): 417-424.
[14] 朱益, 王浩, 陈利平, 郭子超, 何中其, 陈网桦. 基于数值计算方法计算最大反应速率到达时间[J]. 化工学报, 2019, 70(1): 379-387.
[15] 徐文星, 梁菁菁, 边卫斌, 戴波, 陶冠良, 刘才. 基于类决策树剪枝法的危化品运输实时路径规划[J]. 化工学报, 2018, 69(S2): 324-329.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!