化工学报 ›› 2020, Vol. 71 ›› Issue (4): 1450-1459.doi: 10.11949/0438-1157.20191525

• 流体力学与传递现象 • 上一篇    下一篇

催化裂化提升管进料段喷嘴射流运动-扩散特性的分析

许峻1(),范怡平1(),钱筱婕2,闫子涵1,卢春喜1   

  1. 1.中国石油大学(北京)重质油国家重点实验室,北京 102249
    2.中国石油大学(北京)机械与储运工程学院,北京 102249
  • 收稿日期:2019-12-16 修回日期:2020-01-07 出版日期:2020-04-05 发布日期:2020-02-10
  • 通讯作者: 范怡平 E-mail:xujuncup@163.com;fanyipin2002@sina.com
  • 作者简介:许峻(1995—),男,硕士研究生,xujuncup@163.com
  • 基金资助:
    国家自然科学基金石油化工联合基金A类重点项目(U1862202)

Theoretical analysis of motion-diffusion characteristics in feed injection zone of FCC riser

Jun XU1(),Yiping FAN1(),Xiaojie QIAN2,Zihan YAN1,Chunxi LU1   

  1. 1.State Key Laboratory of Heavy Oil, China University of Petroleum, Beijing 102249, China
    2.College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing 102249, China
  • Received:2019-12-16 Revised:2020-01-07 Online:2020-04-05 Published:2020-02-10
  • Contact: Yiping FAN E-mail:xujuncup@163.com;fanyipin2002@sina.com

摘要:

针对催化裂化提升管反应器进料混合区域内的复杂流场,提出将连续喷嘴进料射流“分块”,利用动量守恒定律,从介观角度分析喷嘴射流与催化剂颗粒之间的混合接触机理;解释了“二次流”从射流主流分离出来的原因。利用空气动力学中的Kutta-Joukowski升力理论,阐明了在提升管内喷嘴射流二次流动后期的发展和扩大过程,实现了对进料射流二次流动全周期演变过程的理论描述。结合附壁射流理论与Kutta-Joukowski升力理论,建立了用于描述提升管内射流二次流动中心流线的模型方程。与实验结果对比,模型曲线与实验中二次流发展趋势有着较高的吻合度,表明该模型能够用于预测提升管内二次流的流动特性。

关键词: 催化裂化, 提升管反应器, 进料段, 多相流, 介尺度, 流体动力学

Abstract:

The complex flow in the feed injection zone of the fluidized catalytic cracking (FCC) riser reactor was theoretically analyzed. By introducing a series of simplifications, the concept of“blocking”was proposed for the first time to convert the continuous feed spray into individual clusters, the mixing/contacting of the catalysts with feed oil was discussed in the mesoscopic scale based on the law of momentum conservation. The occurrence of the secondary flow which was separated from feed spray was interpreted sequentially. Furthermore, on the basis of the Kutta-Joukowski lift theorem in aerodynamics, the extension and the development of the secondary flow were theoretically deduced. Thus the whole evolution process of the secondary flow in the feed injection zone was clearly described. By combining the wall jet and the Kutta-Joukowski lift theories, a model for determining the location of the secondary flow centerline is given. Compared with the experimental results, the model curve has a high degree of agreement with the secondary flow development trend in the experiment, indicating that the model can be used to predict the flow characteristics of the secondary flow in the riser.

Key words: FCC, riser reactor, feed injection zone, multiphase flow, mesoscale, hydrodynamics

中图分类号: 

  • TQ 016
1 卢春喜, 范怡平, 刘梦溪, 等. 催化裂化反应系统关键装备技术研究进展[J]. 石油学报(石油加工), 2018, 34(3): 441-454.
Lu C X, Fan Y P, Liu M X, et al. Advances in key equipment technologies of reaction system in RFCC unit[J]. Acta Petrolei Sinica (Petroleum Processing), 2018, 34(3): 441-454.
2 王钊, 闫子涵, 范怡平, 等. 催化裂化提升管进料混合段研究进展[J]. 当代化工, 2015, 44(5): 997-1000.
Wang Z, Yan Z H, Fan Y P, et al. Research progress of feed injection-mixing zone in FCC riser[J]. Contemporary Chemical Industry, 2015, 44(5): 997-1000.
3 邓任生, 魏飞, 胡永琪, 等. 流态化及流固接触技术[J]. 现代化工, 1999, 19(12): 11-14.
Deng R S, Wei F, Hu Y Q, et al. Fluidization and fluid-solids contact technique[J]. Modern Chemical Industry, 1999, 19 (12): 11-14.
4 Bai D R, Jin Y, Yu Z Q, et al. The axial distribution of the cross-sectionally averaged voidage in fast fluidized beds[J]. Powder Technology, 1992, 71(1): 51-58.
5 Zhang W N, Tang Y K, Johnsson F. Radial voidage profiles in fast fluidized beds of different diameters[J]. Chemical Engineering Science, 1991, 46(12): 3045-3052.
6 Schnitzlein M G, Weinstein H. Flow characterization in high-velocity fluidized beds using pressure fluctuations[J]. Chemical Engineering Science, 1988, 43(10): 2605-2614.
7 Gao J S, Xu C M, Lin S X, et al. Simulations of gas-liquid-solid 3-phase flow and reaction in FCC riser reactors[J]. AIChE Journal, 2001, 47(3): 677-692.
8 鄂承林, 范怡平, 卢春喜, 等. 提升管喷嘴进料段内油、剂两相接触状况研究[J]. 高校化学工程学报, 2008, 22(3): 447-453.
E C L, Fan Y P, Lu C X, et al. Matching of the catalysts with feed jet gas in the feed injection section of FCC riser[J]. Journal of Chemical Engineering of Chinese Universities, 2008, 22(3): 447-453.
9 鄂承林, 范怡平, 卢春喜, 等. 喷嘴进料对提升管进料段内颗粒浓度径向分布的影响[J]. 过程工程学报, 2008, 8(1): 18-22.
E C L, Fan Y P, Lu C X, et al. Effect of jet gas on solid hold-up profile in the feed injection section of the riser[J]. The Chinese Journal of Process Engineering, 2008, 8(1): 18-22.
10 陈昇, 王维, 闫子涵, 等. 基于EMMS曳力模型的提升管进料混合段模拟[J]. 化学反应工程与工艺, 2014, 30(1): 71-78.
Chen S, Wang W, Yan Z H, et al. Simulation of gas-solid mixing and flow in the feedstock zone of a riser by EMMS drag model[J]. Chemical Reaction Engineering and Technology, 2014, 30(1): 71-78.
11 党飞鹏, 张漪芳, 王小强, 等. 提升管反应器结焦问题及解决措施[J]. 石油化工设备, 2004, 33(1): 64-65.
Dang F P, Zhang Y F, Wang X Q, et al. Coking problem and solution of riser reactor[J]. Petro-chemical Equipment, 2004, 33(1): 64-65.
12 范怡平, 叶盛, 卢春喜, 等. 提升管反应器进料混合段内气固两相流动特性(Ⅰ): 实验研究[J]. 化工学报, 2002, 53(10): 1003-1008.
Fan Y P, Ye S, Lu C X, et al. Gas-solid two phase flow in feed injection zone of FCC riser reactors (Ⅰ): Experimental research[J]. Journal of Chemical Industry and Engineering (China), 2002, 53(10): 1003-1008.
13 范怡平, 叶盛, 卢春喜, 等. 提升管反应器进料混合段内气固两相流动特性(Ⅱ): 理论分析[J]. 化工学报, 2002, 53(10): 1009-1014.
Fan Y P, Ye S, Lu C X, et al. Gas-solid two-phase flow in feed injection zone of FCC riser reactors (Ⅱ): Analytical research[J]. Journal of Chemical Industry and Engineering (China), 2002, 53(10): 1009-1014.
14 Fan Y P, E C L, Shi M X, et al. Diffusion of feed spray in fluid catalytic cracker riser[J]. AIChE Journal, 2010, 56(4): 858-868.
15 Yan Z H, Fan Y P, Wang Z, et al. Dispersion of feed spray in a new type of FCC feed injection scheme[J]. AIChE Journal, 2016, 62(1): 46-61.
16 黄卫星, 漆小波, 潘永亮, 等. 气固循环床提升管内的局部颗粒浓度及流动发展[J]. 高校化学工程学报, 2002, 16(6): 626-631.
Huang W X, Qi X B, Pan Y L, et al. Local solid-particle concentration and flow development in a long CFB riser[J]. Journal of Chemical Engineering of Chinese Universities, 2002, 16(6): 626-631.
17 范怡平, 卢春喜. 催化裂化提升管进料段内多相流动及其结构优化[J]. 化工学报, 2018, 69(1): 249-258.
Fan Y P, Lu C X. Multiphase flow characteristics and structural optimization in feed injection zone of FCC riser[J]. CIESC Journal, 2018, 69(1): 249-258.
18 高学平. 高等流体力学[M]. 天津: 天津大学出版社, 2005: 42-44.
Gao X P. Advanced Fluid Mechanics [M]. Tianjin: Tianjin University Press, 2005: 42-44.
19 周云龙, 郭婷婷. 高等流体力学[M]. 北京: 中国电力出版社, 2008.
Zhou Y L, Guo T T. Advanced Fluid Mechanics[M]. Beijing: China Electric Power Press, 2008.
20 李晨, 范怡平, 贾海兵, 等. 提升管反应器中颗粒浓度径向分布的力学特性[J]. 过程工程学报, 2016, 16(4): 541-548.
Li C, Fan Y P, Jia H B, et al. Mechanical radial distribution of particles concentration in a riser reactor[J]. The Chinese Journal of Process Engineering, 2016, 16(4): 541-548.
21 李晨. 催化裂化提升管颗粒浓度径向分布特性的研究[D]. 北京: 中国石油大学(北京), 2016.
Li C. Study on particle radial distribution characteristics of FCC riser reactor[D]. Beijing: China University of Petroleum, 2016.
22 钟孝湘, 侯拴弟, 郑茂军, 等. 抗滑落提升管反应器流体力学性能的研究[J]. 石油炼制与化工, 2000, 31(7): 45-50.
Zhong X X, Hou S D, Zheng M J, et al. Study on flow hydrodynamics of anti-down-slipping riser[J]. China Petroleum Processing Petrochemical Technology, 2000, 31(7): 45-50.
23 刘丙超, 苏鲁书, 张善鹤, 等. 新型变径提升管冷模实验研究[J]. 石油炼制与化工, 2018, 49(3): 48-53.
Liu B C, Su L S, Zhang S H, et al. Cold mold study of a novel diameter-changing riser reactor[J]. China Petroleum Processing Petrochemical Technology, 2018, 49(3): 48-53.
24 范怡平, 蔡飞鹏, 时铭显, 等. 催化裂化提升管进料段内气、固两相混合流动特性及其改进[J]. 石油学报(石油加工), 2004, 20(5): 13-19.
Fan Y P, Cai F P, Shi M X, et al. The gas-solid two-phase flow and the improvement in the feedstock injection-mixing zone of FCC riser[J]. Acta Petrolei Sinica (Petroleum Processing), 2004, 20(5): 13-19.
25 Chen S, Fan Y P, Yan Z H, et al. CFD simulation of gas-solid two-phase flow and mixing in a FCC riser with feedstock injection[J]. Powder Technology, 2016, 287: 29-42.
26 Wang W, Li J H. Simulation of gas-solid two-phase flow by a multi-scale CFD approach of the EMMS model to the sub-grid level[J]. Chemical Engineering Science, 2007, 62(1): 208-231.
27 王维, 洪坤, 鲁波娜, 等. 流态化模拟: 基于介尺度结构的多尺度CFD[J]. 化工学报, 2013, 64(1): 95-106.
Wang W, Hong K, Lu B N, et al. Fluidized bed simulation: structure-dependent multiscale CFD[J]. CIESC Journal, 2013, 64(1): 95-106.
28 汪申, 时铭显. 我国催化裂化提升管反应系统设备技术的进展[J]. 石油化工动态, 2000, 8(5): 46-50.
Wang S, Shi M X. Progress of domestic FCC riser reactor technology[J]. Petrochemical Industry Trends, 2000, 8(5): 46-50.
29 范怡平. 催化裂化提升管内气固两相流动特性的研究[D]. 北京: 石油大学(北京), 2000.
Fan Y P. Study on gas-solid two-phase flow characteristics in FCC riser[D]. Beijing: University of Petroleum, 2000.
[1] 王少雄, 李玉星, 刘翠伟, 梁杰, 李安琪, 薛源. 水下输气管道泄漏扩散特性模拟研究[J]. 化工学报, 2020, 71(4): 1898-1911.
[2] 陈汇龙, 桂铠, 韩婷, 谢晓凤, 陆俊成, 赵斌娟. 上游泵送机械密封润滑膜固体颗粒沉积特性研究[J]. 化工学报, 2020, 71(4): 1712-1722.
[3] 李睿, 张以任, 陈杭, 路贵民, 于建国. 二元液滴自由碰撞聚并后的振荡行为研究[J]. 化工学报, 2020, 71(4): 1482-1490.
[4] 陈琦, 李京坤, 宋昱, 何倩, 李雪芳. 流动聚焦微通道内牛顿微液滴在幂律剪切致稀流体中的生成研究[J]. 化工学报, 2020, 71(4): 1510-1519.
[5] 周海军, 熊源泉. 补充风对水平管高压密相气力输送影响的模拟研究[J]. 化工学报, 2020, 71(2): 602-613.
[6] 付涛涛, 朱春英, 马友光. 微通道内卫星液滴生成机理与惯性分离机制[J]. 化工学报, 2020, 71(2): 451-458.
[7] 黄正梁, 王超, 李少硕, 杨遥, 孙婧元, 王靖岱, 阳永荣. 基于深度学习的气液固三相反应器图像分析方法及应用[J]. 化工学报, 2020, 71(1): 274-282.
[8] 陈宇超, 崔永晋, 王凯, 骆广生. 阶梯式T型微通道内液滴、气泡分散规律[J]. 化工学报, 2020, 71(1): 265-273.
[9] 蒋二辉, 张东伟, 周俊杰, 沈超, 魏新利. 不同结构下两弯头脉动热管的数值模拟[J]. 化工学报, 2019, 70(S2): 244-249.
[10] 高泽世, 姚元鹏, 吴慧英. 球形容器内石蜡非约束融化特性实验[J]. 化工学报, 2019, 70(7): 2480-2487.
[11] 佟颖, Ahmad Nouman, 鲁波娜, 王维. 基于EMMS介尺度模型的双分散鼓泡流化床的模拟[J]. 化工学报, 2019, 70(5): 1682-1692.
[12] 苏武, 石孝刚, 吴迎亚, 高金森, 蓝兴英. 乙炔加氢制乙烯浆态床反应器的CFD模拟[J]. 化工学报, 2019, 70(5): 1858-1867.
[13] 周鑫, 邓乐东, 王宏, 朱恂, 陈蓉, 廖强, 丁玉栋. 圆柱壁面上液滴凝固相变对其运动行为的影响[J]. 化工学报, 2019, 70(3): 883-891.
[14] 徐兰, 潘大伟, 邓朝俊, 黄卫星, 刘梅芳. “一步法”微流控制备大直径复合乳粒中几何尺寸调控规律研究[J]. 化工学报, 2019, 70(12): 4617-4624.
[15] 孙建闯, 曹夏昕, 冉旭, 张卓华, 米争鹏, 丁铭. 低流量下等高差自然循环系统倒流现象实验研究[J]. 化工学报, 2019, 70(11): 4231-4237.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘心洪, 包雨云, 李志鹏, 高正明, John M. Smith. Particle Image Velocimetry Study of Turbulence Characteristics in a Vessel Agitated by a Dual Rushton Impeller[J]. CIESC Journal, 2008, 16(5): 700 -708 .
[2] 刘心洪, 包雨云, 李志鹏, 高正明. Analysis of Turbulence Structure in the Stirred Tank with a Deep Hollow Blade Disc Turbine by Time-resolved PIV[J]. CIESC Journal, 2010, 18(4): 588 -599 .
[3] 王洪斌,徐春明. 渣油催化裂化提升管反应器性能的数值模拟——喷嘴射流速度与角度对流动反应的影响 [J]. CIESC Journal, 1999, 50(2): 200 -207 .
[4] 马庆兰, 陈光进. 油水乳液体系水合分离塔的模拟计算 [J]. 化工学报, 2010, 61(9): 2401 -2408 .
[5] 余剑, 朱剑虹, 岳君容, 孙立鑫, 刘新华, 许光文. 微型流化床反应动力学分析仪的研制与应用 [J]. 化工学报, 2009, 60(10): 2669 -2674 .
[6] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[7] 李鑫钢,杜英生,余国琮. 多组分精馏计算的新方法 [J]. CIESC Journal, 1988, 39(2): 243 -248 .
[8] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[9] 陈光文, 袁权. 微化工技术 [J]. 化工学报, 2003, 54(4): 427 -439 .
[10] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .