化工学报 ›› 2020, Vol. 71 ›› Issue (4): 1836-1843.doi: 10.11949/0438-1157.20191423

• 材料化学工程与纳米技术 • 上一篇    下一篇

一步电沉积法制备硫化镍/泡沫镍材料及其赝电容性能研究

赵少飞1(),刘鹏1,李婉萍1,曾小红1,钟远红1,余林1(),曾华强1,2()   

  1. 1.广东工业大学轻工化工学院,广东 广州 510006
    2.纳米生物实验室,新加坡 138669
  • 收稿日期:2019-11-25 修回日期:2020-02-05 出版日期:2020-04-05 发布日期:2020-02-12
  • 通讯作者: 余林,曾华强 E-mail:sfzhao@gdut.edu.cn;gych@gdut.edu.cn;hqzeng@nbl.a-star.edu.sg
  • 作者简介:赵少飞(1985—),男,博士研究生,sfzhao@gdut.edu.cn
  • 基金资助:
    国家自然科学基金项目(21306026)

One-step electrodeposition and pseudocapacitance properties of 3D Ni3S2 supported on Ni foam

Shaofei ZHAO1(),Peng LIU1,Wanping LI1,Xiaohong ZENG1,Yuanhong ZHONG1,Lin YU1(),Huaqiang ZENG1,2()   

  1. 1.School of Chemical Engineering & Light Industry, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
    2.Nanobio Laboratory, Singapore 138669, Singapore
  • Received:2019-11-25 Revised:2020-02-05 Online:2020-04-05 Published:2020-02-12
  • Contact: Lin YU,Huaqiang ZENG E-mail:sfzhao@gdut.edu.cn;gych@gdut.edu.cn;hqzeng@nbl.a-star.edu.sg

摘要:

通过一步电化学沉积法在泡沫镍(Ni foam,NF)集流体上制备了3D硫化镍(Ni3S2)材料,利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、拉曼光谱(Raman)、X射线光电子能谱(XPS)等对所制备材料的物化结构和形貌进行了表征,并采用循环伏安法(CV)、恒流充放电法(GCD)研究了其作为超级电容器电极的电化学性能。测试结果表明,制备的Ni3S2/NF-10材料具有相互连接的3D结构,表现出优异的赝电容性能。在1 A/g电流密度下,比电容高达2850 F/g。将电流密度提高到10 A/g,该材料比电容仍能达到1972 F/g,说明其具有优异的倍率性能。测试结果表明所制备的Ni3S2材料有望应用于电化学储能领域。

关键词: 超级电容器, 硫化镍, 赝电容, 电沉积, 电化学, 泡沫镍

Abstract:

In this work, a facile one-step electrodeposition method is developed to prepare 3D Ni3S2 interconnected nanosheet arrays on Ni foam as electrodes for suprecapacitors, resulting in excellent pseudocapacitance performance. The composition, microstructure and morphology of the prepared Ni3S2 materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The electrochemical capacitance properties were tested by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) measurements in a three-electrode system. Taking advantage of the highly conductive 3D architectures, the Ni3S2/NF-10 electrode exhibits a superior specific capacitance of 2850 F/g at current density of 1 A/g. Remarkably, a specific capacitance of 1972 F/g could be still achieved at a high current density of 10 A/g, indicating its excellent rate capability. With the increase of the electrodeposition time, the 3D architectures of Ni3S2 begin to disappear, resulting in a reduced specific capacitance. The appropriate electrodeposition conditions is the key of preparation of high performance electrode materials. Test results show that the prepared Ni3S2 material is expected to be used in the field of electrochemical energy storage.

Key words: supercapacitor, Ni3S2, pseudocapacitance, electrodeposition, electrochemistry, Ni foam

中图分类号: 

  • TQ 152

图1

Ni3S2的XRD、拉曼及XPS谱图"

图2

Ni3S2@NF材料的SEM 图"

图3

不同扫描速率下Ni3S2@NF-10电极的循环伏安曲线及峰电流与扫描速率的关系"

图4

Ni3S2@NF-10在不同电流密度下的放电曲线及不同材料的比电容"

图5

Ni3S2@NF-10,20,40在5和100 mV/s扫速下的CV曲线"

图6

Ni3S2@NF-10循环性能曲线及2000次循环后的SEM图"

表1

不同电极材料电化学性能比较"

电极材料电流密度/(A/g)比电容/(F/g)循环后比电容/(F/g)文献
3D Ni3S2纳米片@NF213701075.9(1000次,6 A/g)[5]
核壳结构Ni3S2@NF0.8736.64604(1000次,0.8 A/g)[7]
NiCo2S4 纳米片@C11394.51581.4(10000次,10 A/g)[15]
Ni3S2纳米柱/石墨烯@NF11900950(2000次,10 A/g)[17]
Ni3S2纳米片@NF228851000(10000次,50 A/g)[21]
Ni3S2 纳米片@NF1773.6575(5000次,5 A/g)[22]
Ni3S2-Cu1.8S 纳米片@NF11686766.8(1000次,10 A/g)[26]
NiCo2S4纳米阵列@NF11777815(3000次,10 A/g)[27]
NiCo2S4纳米片@NF119561722(5000次,2 A/g)[28]
Ni1Co1-S@NF0.52553.91914.6(10000次,20 A/g)[29]
Ni3S2-NiS51077.3660.5(10000次,20A/g)[30]
3D Ni3S2@NF-1012850744(2000次,10 A/g)本文
1 禹兴海, 罗齐良, 潘剑, 等. 一种生物炭基柔性固态超级电容器的制备及性能研究[J]. 化工学报, 2019, 70(9): 3590-3600.
Yu X H, Luo Q L, Pan J, et al. Preparation and properties of flexible supercapacitor based on biochar and solid gel-electrolyte[J]. CIESC Juornal, 2019, 70(9): 3590-3600.
2 Mariappan V K, Krishnamoorthy K, Pazhamalai P, et al. Nanostructured ternary metal chalcogenide-based binder-free electrodes for high energy density asymmetric supercapacitors[J]. Nano Energy, 2019, 57: 307-316.
3 He S H, Li Z P, Wang J Q, et al. MOF-derived NixCo1-x(OH)2 composite microspheres for high-performance supercapacitors[J]. RSC Adv., 2016, 6(55): 49478-49486.
4 Cai D P, Wang D D, Wang C X, et al. Construction of desirable NiCo2S4 nanotube arrays on nickel foam substrate for pseudocapacitors with enhanced performance[J]. Electrochimica Acta, 2015, 151: 35-41.
5 Huo H H, Zhao Y Q, Xu C L. 3D Ni3S2 nanosheet arrays supported on Ni foam for high-performance supercapacitor and non-enzymatic glucose detection[J]. Journal of Materials Chemistry A, 2014, 2(36): 15111-15117.
6 Tran V C, Sahoo S, Shim J J. Room-temperature synthesis of NiS hollow spheres on nickel foam for high-performance supercapacitor electrodes[J]. Materials Letters, 2018, 210: 105-108.
7 Chen L, Guan L X, Tao J G. Morphology control of Ni3S2 multiple structures and their effect on supercapacitor performances[J]. Journal of Materials Science, 2019, 54(19): 12737-12746.
8 Ji F Z, Jiang D, Chen X M, et al. Simple in-situ growth of layered Ni3S2 thin film electrode for the development of high-performance supercapacitors[J]. Applied Surface Science, 2017, 399: 432-439.
9 朱裔荣, 贠潇如, 吴尚霖, 等. 多孔硫化镍中空亚微球的制备及其超电容性能研究[J]. 湖南工业大学学报, 2019, 33(5): 92-98.
Zhu Y R, Yun X R, Wu S L, et al. Research on the preparation and supercapacitive properties of porous nickel sulfide hollow submicrospheres[J]. Journal of Hunan University of Technology, 2019, 33(5): 92-98.
10 Zhang Y, Zhang J Q, Wan L, et al. Construction of 3D polypyrrole/CoS/graphene composite electrode with enhanced pseudocapacitive performance[J]. Ionics, 2018, 24(9): 2689-2696.
11 Wen Y X, Liu Y P, Dang S, et al. High mass loading Ni-decorated Co9S8 with enhanced electrochemical performance for flexible quasi-solid-state asymmetric supercapacitors[J]. Journal of Power Sources, 2019, 423: 106-114.
12 赵双生, 应宗荣, 杨佳佳, 等. “一锅法”水热制备CuS/C复合材料及其在超级电容器中的应用[J]. 化工学报, 2016, 67(11): 4892-4898.
Zhao S S, Ying Z R, Yang J J, et al. One-pot hydrothermal synthesis of CuS/C composite and its application in supercapacitors[J]. CIESC Journal, 2016, 67(11): 4892-4898.
13 Zhang Y, Wang X Z, Shen M, et al. Uniform growth of NiCo2S4 nanoflakes arrays on nickel foam for binder-free high-performance supercapacitors[J]. Journal of Materials Science, 2019, 54(6): 4821-4830.
14 Shi B B, Saravanakumar B, Wei W, et al. 3D honeycomb NiCo2S4@ Ni(OH)2 nanosheets for flexible all-solid-state asymmetric supercapacitors with enhanced specific capacitance[J]. Journal of Alloys and Compounds, 2019, 790: 693-702.
15 Liu Y P, Li Z L, Yao L, et al. Confined growth of NiCo2S4 nanosheets on carbon flakes derived from eggplant with enhanced performance for asymmetric supercapacitors[J]. Chemical Engineering Journal, 2019, 366: 550-559.
16 Su C, Xu S S, Zhang L, et al. Hierarchical CoNi2S4 nanosheet/nanotube array structure on carbon fiber cloth for high-performance hybrid supercapacitors[J]. Electrochimica Acta, 2019, 305: 81-89.
17 Kamali-Heidari E, Xu Z L, Sohi M H, et al. Core-shell structured Ni3S2 nanorods grown on interconnected Ni-graphene foam for symmetric supercapacitors[J]. Electrochimica Acta, 2018, 271: 507-518.
18 Li Y J, Ye K, Cheng K, et al. Electrodeposition of nickel sulfide on graphene-covered make-up cotton as a flexible electrode material for high-performance supercapacitors[J]. Journal of Power Sources, 2015, 274: 943-950.
19 Yao M Q, Sun B L, He L X, et al. Self-assembled Ni3S2 nanosheets with mesoporous structure tightly held on Ni foam as a highly efficient and long-term electrocatalyst for water oxidation[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(5): 5430-5439.
20 Pramanik A, Maiti S, Sreemany M, et al. Carbon doped MnCo2S4 microcubes grown on Ni foam as high energy density faradaic electrode[J]. Electrochimica Acta, 2016, 213: 672-679.
21 Chen J S, Guan C, Gui Y, et al. Rational design of self-supported Ni3S2 nanosheets array for advanced asymmetric supercapacitor with a superior energy density[J]. ACS Applied Materials & Interfaces, 2017, 9(1): 496-504.
22 Xu J S, Sun Y D, Lu M J, et al. One-step electrodeposition fabrication of Ni3S2 nanosheet arrays on Ni foam as an advanced electrode for asymmetric supercapacitors[J]. Science China Materials, 2019, 62(5): 699-710.
23 Chou S W, Lin J Y. Cathodic deposition of flaky nickel sulfide nanostructure as an electroactive material for high-performance supercapacitors[J]. Journal of the Electrochemical Society, 2013, 160(4): D178-D182.
24 Ou X, Gan L, Luo Z. Graphene-templated growth of hollow Ni3S2 nanoparticles with enhanced pseudocapacitive performance[J]. Journal of Materials Chemistry A, 2014, 2(45): 19214-19220.
25 Feng N, Hu D K, Wang P, et al. Growth of nanostructured nickel sulfide films on Ni foam as high-performance cathodes for lithium ion batteries[J]. Phys. Chem. Chem. Phys., 2013, 15(24): 9924-9930.
26 Liu Y D, Liu G Q, Nie X, et al. In situ formation of Ni3S2-Cu1.8S nanosheets to promote hybrid supercapacitor performance[J]. Journal of Materials Chemistry A, 2019, 7(18): 11044-11052.
27 Chen X J, Chen D, Guo X Y, et al. Facile growth of caterpillar-like NiCo2S4 nanocrystal arrays on nickle foam for high-performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2017, 9(22): 18774-18781.
28 Liu L, Chen T, Rong H, et al. NiCo2S4 nanosheets network supported on Ni foam as an electrode for hybrid supercapacitors[J]. Journal of Alloys and Compounds, 2018, 766: 149-156.
29 Zha D S, Fu Y S, Zhang L L, et al. Design and fabrication of highly open nickel cobalt sulfide nanosheets on Ni foam for asymmetric supercapacitors with high energy density and long cycle-life[J]. Journal of Power Sources, 2018, 378: 31-39.
30 Zang X, Dai Z, Yang J, et al. Template-assisted synthesis of nickel sulfide nanowires: tuning the compositions for supercapacitors with improved electrochemical stability[J]. ACS Applied Materials & Interfaces, 2016, 8(37): 24645-24651.
[1] 王捷, 李圆, 赵海雷. 纳米颗粒组装三维Co3O4微米花材料制备及储锂性能研究[J]. 化工学报, 2020, 71(4): 1844-1850.
[2] 黄珊, 陆勇泽, 朱光灿, 孔赟. 耦合生物阴极SND的MLMB -MFC的构建与运行[J]. 化工学报, 2020, 71(4): 1772-1780.
[3] 朱连燕, 王玉明, 周幸福. 响应曲面法优化电催化降解染料废水工艺的研究[J]. 化工学报, 2020, 71(3): 1335-1342.
[4] 李敬, 杜刚, 殷娟娟. ZnxCo1-xCO3碳酸盐负极材料的制备及其电化学性能研究[J]. 化工学报, 2020, 71(3): 1390-1397.
[5] 陈钰, 牟天成. 低共熔溶剂在电池和电催化中的应用[J]. 化工学报, 2020, 71(1): 106-121.
[6] 魏颖, 陶明松, 朱耀锋, 张庆国. GNs/[Bmim][BF4]复合材料的制备及其超电容性能[J]. 化工学报, 2020, 71(1): 417-425.
[7] 陈克龙, 黄建花. g-C3N4-CdS-NiS2复合纳米管的制备及可见光催化分解水制氢[J]. 化工学报, 2020, 71(1): 397-408.
[8] 秦美华, 朱红求, 李勇刚, 陈俊名, 张凤雪, 李文婷. 基于STA-K均值聚类的电化学废水处理过程离子浓度软测量[J]. 化工学报, 2019, 70(9): 3458-3464.
[9] 徐杰, 陈新, 王玲玲. 用过期切片面包制备环保超级电容器活性炭电极材料[J]. 化工学报, 2019, 70(9): 3582-3589.
[10] 禹兴海, 罗齐良, 潘剑, 韩玉琦, 张奇峰. 一种生物炭基柔性固态超级电容器的制备及性能研究[J]. 化工学报, 2019, 70(9): 3590-3600.
[11] 王鲁丰, 钱鑫, 邓丽芳, 袁浩然. 氮气电化学合成氨催化剂研究进展[J]. 化工学报, 2019, 70(8): 2854-2863.
[12] 王凤超, 高宁博, 全翠. 废轮胎热解技术及炭黑产物的品质提升与应用研究进展[J]. 化工学报, 2019, 70(8): 2864-2875.
[13] 夏大海, 马超, 宋诗哲. Cl-污染大气环境下T91钢孔蚀萌生的电化学噪声检测[J]. 化工学报, 2019, 70(7): 2668-2674.
[14] 张璇, 杨佳兴, 金秋阳, 佟明兴, 周俊熹, 高静, 李国华. 超盐环境下含氮碳气凝胶的制备及其在超级电容器中的应用[J]. 化工学报, 2019, 70(7): 2748-2757.
[15] 朱计划, 陈姚, 丘秀莲, 黄宇明, 郑成, 杨伟. 微波辅助溶剂热法制备LiMn1-xMgxPO4/C正极材料[J]. 化工学报, 2019, 70(7): 2775-2785.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 陈光文, 袁权. 微化工技术 [J]. 化工学报, 2003, 54(4): 427 -439 .
[4] 邓先和,邓颂九. 管间支撑物的结构对横纹槽管管束传热强化性能的影响 [J]. CIESC Journal, 1992, 43(1): 62 -68 .
[5] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[6] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[7] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[8] 葛善海,衣宝廉,徐洪峰. 质子交换膜燃料电池水传递模型 [J]. CIESC Journal, 1999, 50(1): 39 -48 .
[9] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[10] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .