化工学报 ›› 2020, Vol. 71 ›› Issue (4): 1836-1843.doi: 10.11949/0438-1157.20191423
赵少飞1(),刘鹏1,李婉萍1,曾小红1,钟远红1,余林1(
),曾华强1,2(
)
Shaofei ZHAO1(),Peng LIU1,Wanping LI1,Xiaohong ZENG1,Yuanhong ZHONG1,Lin YU1(
),Huaqiang ZENG1,2(
)
摘要:
通过一步电化学沉积法在泡沫镍(Ni foam,NF)集流体上制备了3D硫化镍(Ni3S2)材料,利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、拉曼光谱(Raman)、X射线光电子能谱(XPS)等对所制备材料的物化结构和形貌进行了表征,并采用循环伏安法(CV)、恒流充放电法(GCD)研究了其作为超级电容器电极的电化学性能。测试结果表明,制备的Ni3S2/NF-10材料具有相互连接的3D结构,表现出优异的赝电容性能。在1 A/g电流密度下,比电容高达2850 F/g。将电流密度提高到10 A/g,该材料比电容仍能达到1972 F/g,说明其具有优异的倍率性能。测试结果表明所制备的Ni3S2材料有望应用于电化学储能领域。
中图分类号:
1 | 禹兴海, 罗齐良, 潘剑, 等. 一种生物炭基柔性固态超级电容器的制备及性能研究[J]. 化工学报, 2019, 70(9): 3590-3600. |
Yu X H, Luo Q L, Pan J, et al. Preparation and properties of flexible supercapacitor based on biochar and solid gel-electrolyte[J]. CIESC Juornal, 2019, 70(9): 3590-3600. | |
2 | Mariappan V K, Krishnamoorthy K, Pazhamalai P, et al. Nanostructured ternary metal chalcogenide-based binder-free electrodes for high energy density asymmetric supercapacitors[J]. Nano Energy, 2019, 57: 307-316. |
3 | He S H, Li Z P, Wang J Q, et al. MOF-derived NixCo1-x(OH)2 composite microspheres for high-performance supercapacitors[J]. RSC Adv., 2016, 6(55): 49478-49486. |
4 | Cai D P, Wang D D, Wang C X, et al. Construction of desirable NiCo2S4 nanotube arrays on nickel foam substrate for pseudocapacitors with enhanced performance[J]. Electrochimica Acta, 2015, 151: 35-41. |
5 | Huo H H, Zhao Y Q, Xu C L. 3D Ni3S2 nanosheet arrays supported on Ni foam for high-performance supercapacitor and non-enzymatic glucose detection[J]. Journal of Materials Chemistry A, 2014, 2(36): 15111-15117. |
6 | Tran V C, Sahoo S, Shim J J. Room-temperature synthesis of NiS hollow spheres on nickel foam for high-performance supercapacitor electrodes[J]. Materials Letters, 2018, 210: 105-108. |
7 | Chen L, Guan L X, Tao J G. Morphology control of Ni3S2 multiple structures and their effect on supercapacitor performances[J]. Journal of Materials Science, 2019, 54(19): 12737-12746. |
8 | Ji F Z, Jiang D, Chen X M, et al. Simple in-situ growth of layered Ni3S2 thin film electrode for the development of high-performance supercapacitors[J]. Applied Surface Science, 2017, 399: 432-439. |
9 | 朱裔荣, 贠潇如, 吴尚霖, 等. 多孔硫化镍中空亚微球的制备及其超电容性能研究[J]. 湖南工业大学学报, 2019, 33(5): 92-98. |
Zhu Y R, Yun X R, Wu S L, et al. Research on the preparation and supercapacitive properties of porous nickel sulfide hollow submicrospheres[J]. Journal of Hunan University of Technology, 2019, 33(5): 92-98. | |
10 | Zhang Y, Zhang J Q, Wan L, et al. Construction of 3D polypyrrole/CoS/graphene composite electrode with enhanced pseudocapacitive performance[J]. Ionics, 2018, 24(9): 2689-2696. |
11 | Wen Y X, Liu Y P, Dang S, et al. High mass loading Ni-decorated Co9S8 with enhanced electrochemical performance for flexible quasi-solid-state asymmetric supercapacitors[J]. Journal of Power Sources, 2019, 423: 106-114. |
12 | 赵双生, 应宗荣, 杨佳佳, 等. “一锅法”水热制备CuS/C复合材料及其在超级电容器中的应用[J]. 化工学报, 2016, 67(11): 4892-4898. |
Zhao S S, Ying Z R, Yang J J, et al. One-pot hydrothermal synthesis of CuS/C composite and its application in supercapacitors[J]. CIESC Journal, 2016, 67(11): 4892-4898. | |
13 | Zhang Y, Wang X Z, Shen M, et al. Uniform growth of NiCo2S4 nanoflakes arrays on nickel foam for binder-free high-performance supercapacitors[J]. Journal of Materials Science, 2019, 54(6): 4821-4830. |
14 | Shi B B, Saravanakumar B, Wei W, et al. 3D honeycomb NiCo2S4@ Ni(OH)2 nanosheets for flexible all-solid-state asymmetric supercapacitors with enhanced specific capacitance[J]. Journal of Alloys and Compounds, 2019, 790: 693-702. |
15 | Liu Y P, Li Z L, Yao L, et al. Confined growth of NiCo2S4 nanosheets on carbon flakes derived from eggplant with enhanced performance for asymmetric supercapacitors[J]. Chemical Engineering Journal, 2019, 366: 550-559. |
16 | Su C, Xu S S, Zhang L, et al. Hierarchical CoNi2S4 nanosheet/nanotube array structure on carbon fiber cloth for high-performance hybrid supercapacitors[J]. Electrochimica Acta, 2019, 305: 81-89. |
17 | Kamali-Heidari E, Xu Z L, Sohi M H, et al. Core-shell structured Ni3S2 nanorods grown on interconnected Ni-graphene foam for symmetric supercapacitors[J]. Electrochimica Acta, 2018, 271: 507-518. |
18 | Li Y J, Ye K, Cheng K, et al. Electrodeposition of nickel sulfide on graphene-covered make-up cotton as a flexible electrode material for high-performance supercapacitors[J]. Journal of Power Sources, 2015, 274: 943-950. |
19 | Yao M Q, Sun B L, He L X, et al. Self-assembled Ni3S2 nanosheets with mesoporous structure tightly held on Ni foam as a highly efficient and long-term electrocatalyst for water oxidation[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(5): 5430-5439. |
20 | Pramanik A, Maiti S, Sreemany M, et al. Carbon doped MnCo2S4 microcubes grown on Ni foam as high energy density faradaic electrode[J]. Electrochimica Acta, 2016, 213: 672-679. |
21 | Chen J S, Guan C, Gui Y, et al. Rational design of self-supported Ni3S2 nanosheets array for advanced asymmetric supercapacitor with a superior energy density[J]. ACS Applied Materials & Interfaces, 2017, 9(1): 496-504. |
22 | Xu J S, Sun Y D, Lu M J, et al. One-step electrodeposition fabrication of Ni3S2 nanosheet arrays on Ni foam as an advanced electrode for asymmetric supercapacitors[J]. Science China Materials, 2019, 62(5): 699-710. |
23 | Chou S W, Lin J Y. Cathodic deposition of flaky nickel sulfide nanostructure as an electroactive material for high-performance supercapacitors[J]. Journal of the Electrochemical Society, 2013, 160(4): D178-D182. |
24 | Ou X, Gan L, Luo Z. Graphene-templated growth of hollow Ni3S2 nanoparticles with enhanced pseudocapacitive performance[J]. Journal of Materials Chemistry A, 2014, 2(45): 19214-19220. |
25 | Feng N, Hu D K, Wang P, et al. Growth of nanostructured nickel sulfide films on Ni foam as high-performance cathodes for lithium ion batteries[J]. Phys. Chem. Chem. Phys., 2013, 15(24): 9924-9930. |
26 | Liu Y D, Liu G Q, Nie X, et al. In situ formation of Ni3S2-Cu1.8S nanosheets to promote hybrid supercapacitor performance[J]. Journal of Materials Chemistry A, 2019, 7(18): 11044-11052. |
27 | Chen X J, Chen D, Guo X Y, et al. Facile growth of caterpillar-like NiCo2S4 nanocrystal arrays on nickle foam for high-performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2017, 9(22): 18774-18781. |
28 | Liu L, Chen T, Rong H, et al. NiCo2S4 nanosheets network supported on Ni foam as an electrode for hybrid supercapacitors[J]. Journal of Alloys and Compounds, 2018, 766: 149-156. |
29 | Zha D S, Fu Y S, Zhang L L, et al. Design and fabrication of highly open nickel cobalt sulfide nanosheets on Ni foam for asymmetric supercapacitors with high energy density and long cycle-life[J]. Journal of Power Sources, 2018, 378: 31-39. |
30 | Zang X, Dai Z, Yang J, et al. Template-assisted synthesis of nickel sulfide nanowires: tuning the compositions for supercapacitors with improved electrochemical stability[J]. ACS Applied Materials & Interfaces, 2016, 8(37): 24645-24651. |
[1] | 王捷, 李圆, 赵海雷. 纳米颗粒组装三维Co3O4微米花材料制备及储锂性能研究[J]. 化工学报, 2020, 71(4): 1844-1850. |
[2] | 黄珊, 陆勇泽, 朱光灿, 孔赟. 耦合生物阴极SND的MLMB -MFC的构建与运行[J]. 化工学报, 2020, 71(4): 1772-1780. |
[3] | 朱连燕, 王玉明, 周幸福. 响应曲面法优化电催化降解染料废水工艺的研究[J]. 化工学报, 2020, 71(3): 1335-1342. |
[4] | 李敬, 杜刚, 殷娟娟. ZnxCo1-xCO3碳酸盐负极材料的制备及其电化学性能研究[J]. 化工学报, 2020, 71(3): 1390-1397. |
[5] | 陈钰, 牟天成. 低共熔溶剂在电池和电催化中的应用[J]. 化工学报, 2020, 71(1): 106-121. |
[6] | 魏颖, 陶明松, 朱耀锋, 张庆国. GNs/[Bmim][BF4]复合材料的制备及其超电容性能[J]. 化工学报, 2020, 71(1): 417-425. |
[7] | 陈克龙, 黄建花. g-C3N4-CdS-NiS2复合纳米管的制备及可见光催化分解水制氢[J]. 化工学报, 2020, 71(1): 397-408. |
[8] | 秦美华, 朱红求, 李勇刚, 陈俊名, 张凤雪, 李文婷. 基于STA-K均值聚类的电化学废水处理过程离子浓度软测量[J]. 化工学报, 2019, 70(9): 3458-3464. |
[9] | 徐杰, 陈新, 王玲玲. 用过期切片面包制备环保超级电容器活性炭电极材料[J]. 化工学报, 2019, 70(9): 3582-3589. |
[10] | 禹兴海, 罗齐良, 潘剑, 韩玉琦, 张奇峰. 一种生物炭基柔性固态超级电容器的制备及性能研究[J]. 化工学报, 2019, 70(9): 3590-3600. |
[11] | 王鲁丰, 钱鑫, 邓丽芳, 袁浩然. 氮气电化学合成氨催化剂研究进展[J]. 化工学报, 2019, 70(8): 2854-2863. |
[12] | 王凤超, 高宁博, 全翠. 废轮胎热解技术及炭黑产物的品质提升与应用研究进展[J]. 化工学报, 2019, 70(8): 2864-2875. |
[13] | 夏大海, 马超, 宋诗哲. Cl-污染大气环境下T91钢孔蚀萌生的电化学噪声检测[J]. 化工学报, 2019, 70(7): 2668-2674. |
[14] | 张璇, 杨佳兴, 金秋阳, 佟明兴, 周俊熹, 高静, 李国华. 超盐环境下含氮碳气凝胶的制备及其在超级电容器中的应用[J]. 化工学报, 2019, 70(7): 2748-2757. |
[15] | 朱计划, 陈姚, 丘秀莲, 黄宇明, 郑成, 杨伟. 微波辅助溶剂热法制备LiMn1-xMgxPO4/C正极材料[J]. 化工学报, 2019, 70(7): 2775-2785. |
|