化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 15-22.doi: 10.11949/0438-1157.20191380

• 热力学 • 上一篇    下一篇

异辛基乙二胺-酰基丙氨酸型质子化离子液体的分子间氢键相互作用

刘佳鑫1(),徐宇1,花儿1,2,3()   

  1. 1.北方民族大学化学与化学工程学院,宁夏 银川 750021
    2.北方民族大学国家民委化工技术基础重点实验室,宁夏 银川 750021
    3.北方民族大学宁夏太阳能化学转化技术重点实验室,宁夏 银川 750021
  • 收稿日期:2019-11-13 修回日期:2019-12-19 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 花儿 E-mail:937979876@qq.com;huaer0101@hotmail.com
  • 作者简介:刘佳鑫(1995—),女,硕士研究生,937979876@qq.com
  • 基金资助:
    北方民族大学科技创新类重点科研项目(2019 KJ13)

Structure and hydrogen bonding study on acylamino acid protic ionic liquids composed of 2-N-ethylhexylethylenediaminim cation with acylalanineate anions

Jiaxin LIU1(),Yu XU1,Er HUA1,2,3()   

  1. 1.College of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, Ningxia, China
    2.Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, Ningxia, China
    3.Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, Ningxia, China
  • Received:2019-11-13 Revised:2019-12-19 Online:2020-04-25 Published:2020-05-22
  • Contact: Er HUA E-mail:937979876@qq.com;huaer0101@hotmail.com

摘要:

利用密度泛函理论M06-2X/6-311G(d,p)方法及基组条件下,对异辛基乙二胺-酰基丙氨酸型质子化离子液体[HEtHex]+[Acylala]-(Acyl =butanoyl, hexanoyl)的几何构型进行了优化,分别得到了5种较稳定构型S1~S5。结果显示,[HEtHex][Butlala]及[HEtHex][Hexlala]的基组重叠误差校正后的分子间相互作用能(ΔE0BSSE)均在-136.14~-117.26 kcal·mol-1(1 kcal·mol-1=4.182 kJ·mol-1)范围内,其中伯胺质子化构型(S1~S3)的相互作用能(-136.14~-127.01 kcal·mol-1)大于仲胺质子化构型(S4~S5)(-119.03~-117.26 kcal·mol-1)。由于[HEtHex][Acylala]阴阳离子间发生了质子转移而形成了较强的O—H…N型氢键,引起[HEtHex]+中N—H振动频率消失,并在2400~2815 cm-1处出现了较强的O—H的伸缩振动,即以分子与分子间的作用力键合。自然键轨道及分子中原子理论计算结果显示,[HEtHex][Acylala]间所形成氢键的稳定化能主要来源于[EtHex]分子中胺基N原子的孤对电子lp(N)与[Acylala]分子中羧基的反键轨道σ*(O—H)间的相互作用。并且分子间氢键能及二阶微扰能分别在18.69 ~ 24.19 kcal·mol-1及43.58 ~57.58 kcal?mol-1范围内,属于较强类型氢键作用。

关键词: 酰基氨基酸离子液体, 密度泛函理论, 质子转移, 分子间氢键作用

Abstract:

The possible molecular structures S1—S5 of acylamino acid protic ionic liquids (AA-PILs) composed of 2-N-ethylhexylethylenediaminium cation coupled with acylalanineate anions forming [HEtHex][Acylala] were studied by the density functional theory at M06-2X/6-311G (d,p) level. The obtained BSSE-corrected interaction energies (ΔE0BSSE) for all the structures are in the region of -136.14~-117.26 kcal?mol-1. For each PIL, the values of ΔE0BSSE in the [HEtHex]1+[Acylala]- (S1—S3, protonated at the primary amine, -136.14—-127.01 kcal·mol-1) are larger than in the [HEtHex]2+[Acylala]- structures (S4 and S5, protonated at the secondary amine, -119.03—-117.26 kcal·mol-1). The IR results show that N—H vibration spectra is disappeared. In the meantime, the stronger O—H vibration spectra appeared in the region of 2400—2815 cm-1 since stronger O—H…N hydrogen bond was formed between [HEtHex] molecule and [Acylala] molecule. The results of natural bond orbital the stabilization energy mainly caused by the interaction between the lone pair electron lp(N) in the [EtHex] and the anti-bonding orbital σ*(O—H) in the [Acylala]: lp(N)→σ*(O—H). The hydrogen bonding energy and the second-order interaction energies are in the range of 18.69—24.19 kcal·mol-1 and 43.58—57.58 kcal?mol-1, respectively. H-bonding between [HEtHex] and [Acylala] is classified as the strong hydrogen bond.

Key words: acylamino acid protic ionic liquids, density functional theory, proton transfer, inter molecular hydrogen bonding

中图分类号: 

  • O 641

图1

在M06-2X/6-311G(d,p)水平下得到的[HEtHex]+和[Acylala]-的电势能面"

图2

在M06-2X/6-311G(d,p)水平下优化得到的[HEtHex][Acylala]分子对的较稳定构型S1-S5(图中标注了主要氢键部位的键长(?)和键角(°))"

表1

阳离子单体及[HEtHex][Acylala]S1~S5中N—H的键长(r)及其变化值"

StructureN—H bondr/?Δr/?
[HEtHex]1+N31—H331.0238
N31—H321.0245
[HEtHex]2+N34—H351.0252
[HEtHex][Butala]S1N31—H331.65190.6281
[HEtHex][Butala]S2N31—H331.63020.6064
[HEtHex][Butala]S3N31—H321.65130.6268
[HEtHex][Butala]S4N34—H351.59280.5676
[HEtHex][Butala]S5N34—H351.57430.5491
[HEtHex][Hexala]S1N31—H331.65280.6290
[HEtHex][Hexala]S2N31—H331.63040.6066
[HEtHex][Hexala]S3N31—H321.65080.6263
[HEtHex][Hexala]S4N34—H351.61070.5855
[HEtHex][Hexala]S5N34—H351.57750.5523

表2

在M06-2X/6-311G(d,p)水平下计算得到的[HEtHex][Acylal]的相互作用能ΔE0"

Structure?E0/(kcal?mol-1)?E0BSSE/(kcal?mol-1)Structure?E0/(kcal?mol-1)?E0BSSE/(kcal?mol-1)
[HEtHex][Butala]S1-133.38-128.68[HEtHex][Hexala]S1-133.31-128.63
[HEtHex][Butala]S2-132.05-127.33[HEtHex][Hexala]S2-131.97-127.25
[HEtHex][Butala]S3-142.15-136.14[HEtHex][Hexala]S3-133.11-127.01
[HEtHex][Butala]S4-123.78-117.26[HEtHex][Hexala]S4-125.43-119.03
[HEtHex][Butala]S5-124.15-117.66[HEtHex][Hexala]S5-124.11-117.57

表3

[HEtHex][Acylala]S1~S5分子对结构中O—H的振动频率(ν)及红移值(Δν)"

StructureO—H bondν/cm-1Δν/cm-1
[Butala]O—H3832.81
[Hexala]O—H3832.02
[HEtHex][Butala]S1O57—H332812.781020.03
[HEtHex][Butala]S2O58—H332715.631117.18
[HEtHex][Butala]S3O58—H322679.841152.97
[HEtHex][Butala]S4O58—H352472.571360.24
[HEtHex][Butala]S5O58—H352401.351431.46
[HEtHex][Hexala]S1O57—H332813.061018.96
[HEtHex][Hexala]S2O58—H332712.181119.84
[HEtHex][Hexala]S3O58—H322686.961145.06
[HEtHex][Hexala]S4O57—H352565.971266.05
[HEtHex][Hexala]S5O58—H352410.521421.50

表4

在M06-2X/6-311G(d, p)水平下NPA分析得到的[HEtHex][Acylala]主要氢键部位电荷分布"

BondN31N34H32H33H35O57O58O59
[Butala]--0.780-0.816-0.707
[Hexala]--0.780-0.816-0.707
[HEtHex]1+-0.690-0.6890.4370.4440.358
[HEtHex]2+-0.827-0.5540.3640.3640.424
[HEtHex][Butala]S1-0.873-0.6870.3650.5140.341-0.734-0.681-0.66
[HEtHex][Butala]S2-0.871-0.6890.3810.5170.344-0.664-0.76-0.659
[HEtHex][Butala]S3-0.869-0.6910.5170.3720.365-0.668-0.767-0.66
[HEtHex][Butala]S4-0.834-0.7190.340.340.513-0.668-0.774-0.659
[HEtHex][Butala]S5-0.834-0.7080.3440.340.512-0.663-0.777-0.659
[HEtHex][Hexala]S1-0.873-0.6870.3650.5140.341-0.681-0.734-0.66
[HEtHex][Hexala]S2-0.871-0.6890.3810.5170.344-0.664-0.76-0.659
[HEtHex][Hexala]S3-0.869-0.6920.5170.3720.368-0.671-0.765-0.658
[HEtHex][Hexala]S4-0.834-0.7190.3410.340.511-0.746-0.688-0.661
[HEtHex][Hexala]S5-0.834-0.7080.3440.340.512-0.664-0.776-0.659

表5

在M06-2X/6-311G(d,p)水平下[HEtHex][Acylala]所有构型中lp(N)→σ*(H—O)轨道相互作用的稳定化能E(2)"

StructureCharge transferE(2)StructureCharge transferE(2)
[HEtHex][Butala]S1LP(N31)→σ*(H33-O57)43.67[HEtHex][Hexala]S1LP(N31)→σ*(H33-O57)43.58
[HEtHex][Butala]S2LP(N31)→σ*(H33-O58)47.74[HEtHex][Hexala]S2LP(N31)→σ*(H33-O58)47.72
[HEtHex][Butala]S3LP(N31)→σ*(H32-O58)47.33[HEtHex][Hexala]S3LP(N31)→σ*(H32-O58)47.48
[HEtHex][Butala]S4LP(N34)→σ*(H35-O58)54.49[HEtHex][Hexala]S4LP(N34)→σ*(H35-O57)50.85
[HEtHex][Butala]S5LP(N34)→σ*(H35-O58)57.58[HEtHex][Hexala]S5LP(N34)→σ*(H35-O58)56.86

表6

在M06-2X/6-311G(d,p)水平下计算得到的[HEtHex][Acylala]的氢键BCP的电子密度性质"

StructureBCPρc/a.u.?2ρc/a.u.G(r)/a.u.V(r)/a.u.H(r)/a.u.EHB/(kcal?mol-1)
[HEtHex][Butala]S1N31…H33—O570.0610.1010.043-0.06-0.01718.76
[HEtHex][Butala]S2N31…H33—O580.0650.0980.044-0.064-0.0220.06
[HEtHex][Butala]S3N31…H32—O580.0620.0950.042-0.06-0.01818.69
[HEtHex][Butala]S4N34…H35—O580.0730.0860.047-0.073-0.02622.87
[HEtHex][Butala]S5N34…H35—O580.0760.0830.049-0.077-0.02824.19
[HEtHex][Hexala]S1N31…H33—O570.0610.1010.042-0.06-0.01718.72
[HEtHex][Hexala]S2N31…H33—O580.0650.0980.044-0.064-0.0220.06
[HEtHex][Hexala]S3N31…H32—O580.0620.0950.042-0.06-0.01818.74
[HEtHex][Hexala]S4N34…H35—O570.0700.0900.046-0.069-0.02321.70
[HEtHex][Hexala]S5N34…H35—O580.0760.0830.049-0.076-0.02823.95

表7

文献值中较强氢键的指标[29,30]及本研究中[HEtHex][Acylala]分子间氢键的特征值"

Bond

H???Y/

?

X—H???Y/

?

Bond angle/(°)IR shift

EHB/

(kcal?mol-1)

Density ρc/a.u.

E(2)/

(kcal?mol-1)

strong H-bond1.2—1.52.2—2.5170—180? 25%15—40? 0.05? 36
H-bond for [HEtHex][Acylala]1.57—1.652.62—2.68166—17527%—37%18.69—24.190.061—0.07643.58—57.58
1 Wilkes J S. A short history of ionic liquids-from molten salts to neoteric solvents[J]. Green Chemistry, 2002, 4(2): 73-80.
2 Pillai P, Pal N, Mandal A. Synthesis, characterization, surface properties and micellization behaviour of imidazolium-based ionic liquids[J]. Journal of Surfactants and Detergents, 2017, 20: 1321-1335.
3 Wishart J F, Castner J E W. The physical chemistry of ionic liquids[J]. Phys. Chem. B, 2007, 111: 201-208.
4 Egorova K S, Gordeev E G, Ananikov V P. Biological activity of ionic liquids and their application in pharmaceutics and medicine[J]. Chem. Rev., 2017, 117(10): 7132-7189.
5 Liaw H J, Chen C C, Chen Y C, et al. Relationship between flash point of ionic liquids and their thermal decomposition[J]. Green Chem., 2012, 14: 2001-2008.
6 Greaves T L, Drummond C J. Protic ionic liquids:   properties and applications[J]. Chemical Reviews, 2008, 108(1): 206-237.
7 邹卫红, 张颖, 阎子峰. 离子液体中电沉积法制备不同形貌材料的研究进展[J]. 石油化工, 2018, 47(10): 1149-1157.
Zou W H, Zhang Y, Yan Z F. Progress in preparation of different morphological materials by electrodeposition in ionic liquids [J]. Petrochemical Technology, 2018, 47(10): 1149-1157.
8 Ohno H, Fukumoto K. Amino acid ionic liquids[J]. Acc. Chem. Res., 2007, 40: 1122-1129.
9 Takemura S, Kawakami S, Harada M, et al. Solvation structure of a copper (Ⅱ) ion in protic ionic liquids comprising N-hexylethylenediamine[J]. Inorg. Chem., 2014, 53: 9667-9678.
10 Nakayama C, Harada M, Iida M. Properties of protic ionic liquids comprised of N-alkyldiethylenetriamine and their complexation of copper (Ⅱ) ions[J]. Eur. J. Inorg. Chem., 2017, 31: 3744-3745.
11 Iida M, Baba C, Inoue M, et al. Ionic liquids of bis(alkylethylenediamine) silver (I) salts and the formation of silver (0) nanoparticles from the ionic liquid system[J]. Chem.Eur. J., 2008, 14: 5047-5056.
12 Zhang J M, Zhang S J, Dong K, et al. Supported absorption of CO2 by tetrabutylphosphonium amino acid ionic liquids[J]. Chem. Eur. J., 2006, 12: 4021-4026.
13 Gao H Y, Zhang Y, Wang H J, et al. Theoretical study on the structure and cation-anion interaction of amino acid cation based amino acid ionic liquid [Pro]+[NO3]-[J]. J. Phys. Chem. A, 2010, 114: 10243-10252.
14 Chen X, Zhang Y, Yu F, et al. DFT calculations on hydrogen-bonded complexes formed between guanine and acrylamide[J]. J. Solution. Chem., 2010, 39: 1341-1349.
15 Wu L, Li Q, Wang F, et al. Advances in quantitative calculation and molecular dynamics simulation of ionic liquids[J]. Journal of Molecular Catalysis, 2012, 26(5): 456-468.
16 Zhao Y, Truhlar D G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and other functionals[J]. Theoretical Chemistry Accounts, 2008, 120(1): 215-241.
17 Bsder R F W. AIM2000Program Package, Ver. 2.0[M]. Hamilton, Ontario, Canada: McMaster University, 2002.
18 Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09[M]. Wallingford CT: Gaussian Inc., 2013.
19 Roohi H, Ghauri K. Exploring physicochemical properties of the nanostructured tunable aryl alkyl ionic liquids (TAAILs)[J]. Journal of Molecular Liquids, 2015, 209: 14-24.
20 Boys SF, Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors[J]. Molecular Physics, 1970, 19(4): 553-566.
21 Li X H, Yin G X, Zhang X Z. Natural bond orbital (NBO) population analysis of some benzyl nitrites[J]. J. Molstruc.-Tolstruc. -Theochem., 2010, 957: 61-65.
22 Lu R, Wu C, Lin J, et al.Theoretical study on interactions between trifluoromethanesulfonate (triflate) based ionic liquid and thiophene[J]. Journal of Molecular Liquids, 2017, 237: 289‒394
23 Bader R F W. Atom in Molecules: A Quantum Theory[M]. New York: Oxford University Press, 1990.
24 徐宇, 花儿.烷基乙二胺‒CF3CO2型质子化离子液体的分子间氢键作用[J].高等学校化学学报, 2018, 39(9): 1954‒1960.
Xu Y, Hua E. Hydrogen bonding study on protic ionic liquids composed of N-alkyl ethylenediaminum cations with trifluoroacetic anion[J].Chemical Journal of Chinese Universities, 2018, 39(9): 1954‒1960.
25 Raamat E, Kaupmees K, Ovsjannikov G, et al. Acidities of strong neutral Brønsted acids in different media[J]. J. Phys. Org. Chem., 2013, (26): 162-170.
26 Trummal A, Lipping L, Kaljurand I, et al. Acidity of strong acids in water and dimethyl sulfoxide[J]. J. Phys. Chem. A, 2016, (120): 3663-3669.
27 张营. 氨基酸离子液体的结构和阴阳离子间相互作用的理论研究[D]. 无锡: 江南大学, 2011.
Zhang Y. Theoretical study on the structure and cation-anion interaction of amino acid based ionic liquids[D]. Wuxi: Jiangnan University, 2011.
28 Steiner T.The hydrogen bond in the solid state[J]. Angewandte Chemie International Edition, 2002, 41: 48-76.
29 Hunt P A, Ashworth C R, Matthews R P. Hydrogen bonding in ionic liquids[J]. Chem. Soc. Rev., 2015, 44: 1257-1288.
30 Grabowski S J. What is the covalency of hydrogen bonding[J]. Chem. Rev., 2011, 111: 2597-2625.
[1] 郑勋,徐宇,花儿. 己基乙二胺-TFS型质子化离子液体与水分子间氢键相互作用的研究[J]. 化工学报, 2019, 70(S2): 85-93.
[2] 张红, 唐留. GaN-MOVPE寄生反应的密度泛函理论研究[J]. 化工学报, 2019, 70(9): 3275-3282.
[3] 宋刘斌, 黎安娴, 肖忠良, 池振振, 曹忠. 第一性原理在锂离子电池电极材料中的应用研究[J]. 化工学报, 2019, 70(6): 2051-2059.
[4] 梁天水, 王宗莹, 高坤, 李润婉, 王铮, 钟委, 赵军. 基于cup burner的含铁基添加剂超细水雾灭火有效性分析[J]. 化工学报, 2019, 70(3): 1236-1242.
[5] 吕泽康, 龙慎伟, 李冠兵, 牛胜利, 路春美, 韩奎华, 王永征. 生物质锅炉氯腐蚀的密度泛函理论研究[J]. 化工学报, 2019, 70(11): 4370-4376.
[6] 王姣, 金哲珺雨, 丁开宁, 赵微微, 蒲小华, 李宗孝. MoO3掺杂对二氧化硅吸附Cu(Ⅱ)影响的Monte Carlo模拟[J]. 化工学报, 2019, 70(1): 355-359.
[7] 周长松, 杨宏旻, 孙佳兴, 祁东旭, 毛琳, 宋子健, 孙路石. Fe3O4协同H2O2气相高级氧化单质汞的机理[J]. 化工学报, 2018, 69(5): 1840-1845.
[8] 夏盛杰, 罗伟, 薛继龙, 孟跃, 蒋军辉, 倪哲明. In/Au(111)和Ir/Au(111)面上巴豆醛选择加氢的机理研究及比较[J]. 化工学报, 2018, 69(4): 1476-1483.
[9] 翟中媛, 金晶, 王永贞, 侯封校, 杨浩然, 李焕龙. 准东煤灰中的钙镁黄长石生成机理研究[J]. 化工学报, 2018, 69(12): 5266-5275.
[10] 朱子文, 郑青榕, 陈武, 王泽浩, 唐政. 基于密度泛函理论的活性炭孔径分布改进算法[J]. 化工学报, 2017, 68(9): 3328-3335.
[11] 石鑫, 姜云瑛, 王洪博, 郝义磊, 陈生辉, 李春玲, 孙霜青, 胡松青. 4种吡嗪类缓蚀剂及其在Cu(111)面吸附行为的密度泛函理论研究[J]. 化工学报, 2017, 68(8): 3211-3217.
[12] 戴金鑫, 刘晶, 刘丰. 化学链燃烧中H2S对NiFe2O4氧载体活性的影响机理[J]. 化工学报, 2017, 68(3): 1163-1169.
[13] 刘宇, 江浩, 李春忠, 刘洪来. 超级电容器及锂电池中锂离子相互作用模型的构建[J]. 化工学报, 2017, 68(2): 552-559.
[14] 韩巧云, 杨晓杰, 邹声华. 深井降温系统管道结垢微观机理[J]. 化工学报, 2016, 67(9): 3936-3945.
[15] 曹根庭, 薛继龙, 肖雪春, 倪哲明. 肉桂醛在M13(M=Au,Pt)团簇表面加氢反应机理分析[J]. 化工学报, 2016, 67(4): 1333-1339.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .