化工学报 ›› 2020, Vol. 71 ›› Issue (7): 3123-3131.doi: 10.11949/0438-1157.20191365

• 分离工程 • 上一篇    下一篇

离子液体-微波辅助从黄连提取小檗碱的实验与分子模拟

吴玉花(),丁欣,李小露,高红凤,冯炜,白红存(),郭庆杰   

  1. 宁夏大学省部共建煤炭高效利用与绿色化工国家重点实验室, 化学国家级实验教学示范中心,化学化工学院,宁夏 银川 750021
  • 收稿日期:2019-11-11 修回日期:2020-03-19 出版日期:2020-07-05 发布日期:2020-04-29
  • 通讯作者: 白红存 E-mail:yuhua236@foxmail.com;hongcunbai@nxu.edu.cn
  • 作者简介:吴玉花(1982—),女,博士研究生,讲师,yuhua236@foxmail.com
  • 基金资助:
    宁夏大学自然科学基金项目(ZR1316);宁夏高等学校一流学科建设项目(NXYLXK2017A04)

Extraction of berberine from Coptis chinensis assisted by ionic liquids and microwave: experiments and molecular modeling

Yuhua WU(),Xin DING,Xiaolu LI,Hongfeng GAO,Wei FENG,Hongcun BAI(),Qingjie GUO   

  1. State Key Laboratory of High-efficiency Utilization of coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, Ningxia, China
  • Received:2019-11-11 Revised:2020-03-19 Online:2020-07-05 Published:2020-04-29
  • Contact: Hongcun BAI E-mail:yuhua236@foxmail.com;hongcunbai@nxu.edu.cn

摘要:

从黄连中高效提取小檗碱等生物活性物质对于中药资源有效利用具有重要意义。然而,黄连中异喹啉类生物碱具有较为相近的化学结构和理化性质,导致高效提取难度增大。离子液体作为优异的反应介质在天然活性物质提取中显示出良好的前景。同时,微波作为新型辅助手段有利于天然植物中药物活性组分的提取和分析研究。以黄连为研究对象,采用离子液体-微波辅助联合方法,提取药用植物中的有效成分小檗碱,实现过程强化与高效提取。研究以离子液体-水溶液为溶剂的微波辅助法,重点考察提取过程中离子液体种类以及固液比、溶液pH、微波时间、微波加热温度、微波功率等工艺条件对提取收率的影响。此外,基于现代密度泛函理论的分子模拟计算,研究微波外场和不同离子液体在小檗碱提取过程中的作用,从分子尺度上揭示离子液体与小檗碱相互作用的物理本质。

关键词: 离子液体, 浸取, 药物, 微波, 小檗碱

Abstract:

The efficient extraction of berberine and other biologically active substances from Coptis chinensis is of great significance for the effective utilization of traditional Chinese medicine resources. However, the isoquinoline alkaloids in Coptis chinensis have relatively similar chemical structures and physicochemical properties, resulting in increased difficulty in efficient extraction. Ionic liquids as excellent reaction media exhibit good prospects in the extraction of natural active substances. At the same time, microwave as a new type of auxiliary method is beneficial to the extraction and analysis of pharmaceutical active components in natural plants. In this study, berberine, an effective component in medicinal plants, was extracted by ionic liquid and microwave co-assisted method to achieve the strengthened processes and high-efficient extraction. The effects of ionic liquid species, solid-liquid ratio, solution pH, microwave heating time, microwave temperature and microwave power on extraction yield were investigated in details. In addition, by using the molecular simulation calculations based on modern density functional theory, the effects of microwave and different ionic liquids on the extraction of berberine were studied. The physical nature of the interaction between ionic liquids and berberine was revealed at the molecular scale.

Key words: ionic liquids, leaching, pharmaceuticals, microwave, berberine

中图分类号: 

  • TQ 530

图1

不同离子液体条件下提取收率"

图2

咪唑类离子液体的阳离子分子结构"

表1

不同工艺条件下黄连中小檗碱提取收率"

ConditionsYield/(mg/g)
[OMIM]Ac-water and microwave heating58.9
water and microwave heating49.4
water and conventional heating40.5
ethanol and microwave heating11.7
ethanol and conventional heating33.6

图3

不同固液比提取收率"

图4

不同溶液pH的提取收率"

图5

不同微波加热时间的提取收率"

图6

不同微波温度的提取收率"

图7

不同微波功率的提取收率"

图8

小檗碱与离子液体相互做作用的约化密度梯度分析"

表2

小檗碱与离子液体分子间相互作用的结合能"

Ionic liquids

Eb without microwave/

(kJ/mol)

Eb with microwave/

(kJ/mol)

[EMIM]Ac-112-766
[BMIM]Ac-122-689
[HMIM]Ac-90-700
[OMIM]Ac-121-806
[DMIM]Ac-147-706
1 Wu J, Luo Y, Deng D, et al. Coptisine from Coptis chinensis exerts diverse beneficial properties: a concise review [J]. Journal of Cellular and Molecular Medicine, 2019, 23(12): 7946-7960.
2 李俊贤, 王嘉毅, 张乐乐, 等. 微量量热法研究中药黄连6种生物碱之间相互作用关系[J]. 药学学报, 2013(12): 1807-1811.
Li J X, Wang J Y, Zhang L L, et al. Microcalorimetric investigation on the interaction of six alkaloids from Rhizoma coptidis[J]. Acta Pharmaceutica Sinica, 2013, 48(12): 1807-1811.
3 张潇, 张亚丽, 苗祥贞, 等. 黄连不同炮制品及组分的抗肿瘤活性与6种生物碱含量相关性研究[J]. 中华中医药杂志, 2019, 34(6): 2668-2671.
Zhang X, Zhang Y L, Miao X Z, et al. Study on the correlation of antitumor activity and the content 6 alkaloids of different processed products and components of Rhizoma coptidis based on Caenorhabditis elegans[J]. Chinese Journal of Traditional Chinese Medicine, 2019, 34(6): 2668-2671.
4 Teng H, Choi Y H. Optimization of ultrasonic-assisted extraction of bioactive alkaloid compounds from Rhizoma coptidis (Coptis chinensis Franch.) using response surface methodology[J]. Food Chemistry, 2014, 142: 299-305.
5 Liu B, Li W, Chang Y, et al. Extraction of berberine from rhizome of Coptis chinensis Franch using supercritical fluid extraction[J]. Journal of Pharmaceutical and Biomedical Analysis, 2006, 41(3): 1056-1060.
6 Chen J, Wang F, Liu J, et al. Analysis of alkaloids in Coptis chinensis Franch by accelerated solvent extraction combined with ultra performance liquid chromatographic analysis with photodiode array and tandem mass spectrometry detections[J]. Analytica Chimica Acta, 2008, 613(2):184-95.
7 马晓雪, 梁坤豪, 魏杰, 等. 醚基高铼酸盐离子液体的催化性能研究[J]. 化工学报, 2020, 71(1): 314-319.
Ma X X, Liang K H, Wei J, et al. Study on catalytic properties of novel ether-based perrhenate ionic liquids[J]. CIESC Journal, 2020, 71(1): 314-319.
8 曾少娟, 尚大伟, 余敏, 等. 离子液体在氨气分离回收中的应用及展望[J]. 化工学报, 2019, 70(3): 791-800.
Zeng S J, Shang D W, Yu M, et al. Applications and perspectives of NH3 separation and recovery with ionic liquids[J]. CIESC Journal, 2019, 70(3): 791-800.
9 Rogers R D, Seddon K R. Ionic liquids-solvents of the future[J]. Science, 2003, 302(5646): 792-793.
10 Egorova K S, Gordeev E G, Ananikov V P. Biological activity of ionic liquids and their application in pharmaceutics and medicine[J]. Chemical Reviews, 2017, 117(10): 7132-7189.
11 Duan M H, Luo M, Zhao C J, et al. Ionic liquid-based negative pressure cavitation-assisted extraction of three main flavonoids from the pigeonpea roots and its pilot-scale application[J]. Separation and Purification Technology, 2013, 107: 26-36.
12 Li Q Y, Wang W C, Liu Y H, et al. Ionic liquid-aqueous solution ultrasonic-assisted extraction of three kinds of alkaloids from Phellodendron amurense Rupr and optimize conditions use response surface[J]. Ultrasonics Sonochemistry, 2014, 24: 13-18.
13 李明英. 离子液体在天然活性物质提取中的应用研究进展[J]. 药学进展, 2015, 39(6): 437-445.
Li M Y. Application progress of ionic liquids in extraction of natural active compounds[J]. Progress of Pharmaceutical Sciences, 2015, 39(6): 437-445.
14 刘有智. 化工过程强化方法与技术[M]. 北京: 化学工业出版社, 2017: 206-221.
Liu Y Z. Methods and Technologies of Chemical Process Intensification[M]. Beijing: Chemical Industry Press, 2017: 206-221.
15 张之达, 陈吉平, 李长平, 等. 离子液体微波辅助萃取川芎中内酯类化合物[J]. 过程工程学报, 2010, 10(3): 498-502.
Zhang Z D, Chen J P, Li C F. Microwave-assisted extraction of lactone from Ligusticum Chuanxiong Hort using ionic liquid[J]. Chinese Journal of Process Engineering, 2010, 10(3): 498-502.
16 Yuan Y, Macquarrie D. Microwave assisted extraction of sulfated polysaccharides (fucoidan) from Ascophyllum nodosum and its antioxidant activity[J]. Carbohydrate Polymers, 2015, 129: 101-107.
17 杜甫佑, 肖小华, 李攻科. 离子液体微波辅助萃取石蒜中生物碱的研究[J]. 分析化学, 2007, 35(11): 1570-1574.
Du F Y, Xiao X H, Li G K. Microwave-assisted extraction of alkaloids from Lycoris radiata by ionic liquid[J]. Chinese Journal of Analytical chemistry, 2007, 35(11):1570-1574.
18 Lu Y B, Ma W Y, Hu R L, et al. Ionic liquid-based microwave-assisted extraction of phenolic alkaloids from the medicinal plant Nelumbo nucifera Gaertn[J]. Journal of Chromatography A, 2008, 1208(1/2): 42-46.
19 Zhao Y, Schultz N E, Truhlar D G. Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions [J]. Journal of Chemical Theory and Computation, 2006, 2: 364-382.
20 Gao H, Feng W, Li, X, et al. Insights into the non-covalent interaction between modified nucleobases and graphene nanoflake from first-principles[J]. Physica E, 2019, 107: 73-79.
21 Bai H, Gao H, Feng W. Interaction in Li@fullerenes and Li+@fullerenes: first principle insights to Li-based endohedral fullerenes[J]. Nanomaterials, 2019, 9: 630.
22 Grimme S, Hansen A, Brandenburg J G, et al. Dispersion-corrected mean-field electronic structure methods[J]. Chemical Reviews, 2016, 116: 5105.
23 Zhang Y M, Li J L, Wang J P, et al. ReaxFF MDSs-based studies on gasification of glucose in supercritical water under microwave heating[J]. International Journal of Hydrogen Energy, 2016, 41(31): 13390-13398.
24 Borges I, Silva A M, Modesto-Costa L. Microwave effects on NiMoS and CoMoS single-sheet catalysts[J]. Journal of Molecular Modeling, 2018, 24(6): 128.
25 Johnson E R, Keinan S, Mori-Sanchez P, et al. Revealing noncovalent interactions[J]. Journal of the American Chemical Society, 2010, 132: 6498-6506.
26 Wang Y, Hu X, Hao J, et al. Nitrogen and oxygen co-doped porous carbon with superior CO2 adsorption performance—a combined experimental and DFT calculation study[J]. Industrial & Engineering Chemistry Research, 2019, 58: 13390-13440.
27 师建玲, 阮文浩, 顾馨妮, 等. 不同品种商品黄连中盐酸小檗碱的含量比较[J].农业科技与信息, 2019, (5):62-65.
Shi J L, Ruan W H, Gu X N, et al. Comparison of berberine hydrochloride content in different commodities of Coptis [J]. Agricultural Science and Technology and Information, 2019, (5): 62-65.
28 Shiflett M B, Harmer M A, Junk C P, et al. Solubility and diffusivity of difluoromethane in room-temperature ionic liquids[J]. Journal of Chemical & Engineering Data, 2006, 51(2): 483-495.
29 Foresman J B, Frisch A. Exploring Chemistry with Electronic Structure Methods [M]. 3rd ed. Wallingford C T:Gaussian Press, 2015.
30 Lu H, Zhang A, Zhang Y, et al. The effect of polymer polarity on the microwave absorbing properties of MWNTs[J]. RSC Advances, 2015, 5(80): 64925-64931.
31 Kar T, Hascakir B. The role of resins, asphaltenes, and water in water–oil emulsion breaking with microwave heating [J]. Energy & Fuels, 2015, 29(6): 3684-3690.
32 Maran J P, Sivakumar V, Thirugnanasambandham K, et al. Microwave assisted extraction of pectin from waste Citrullus lanatus fruit rinds [J]. Carbohydrate Polymers, 2014, 101: 786-791.
33 Visser A E, Richard P S, Robin D R. pH-Dependent partitioning in room temperature ionic liquids provides a link to traditional solvent extraction behavior[J]. Green Chemistry, 2000,( 1): 1-4.
34 Ferreira A M, Faustino V F, Mondal D, et al. Improving the extraction and purification of immunoglobulin G by the use of ionic liquids as adjuvants in aqueous biphasic systems[J]. Journal of Biotechnology, 2016, 236: 166-175.
35 Li Y, Bai H, Li L, et al. Stabilities and electronic properties of nanowires made of single atomic sulfur chains encapsulated in zigzag carbon nanotubes [J]. Nanotechnology, 2018, 29: 415703.
[1] 刘佳鑫, 徐宇, 花儿. 异辛基乙二胺-酰基丙氨酸型质子化离子液体的分子间氢键相互作用[J]. 化工学报, 2020, 71(S1): 15-22.
[2] 方俊华,唐琦,李杨,李遥瑶,吕秋颖,范准,周健,许劲. 污泥水热碳化中磷的形态变化及金属浸出行为[J]. 化工学报, 2020, 71(7): 3288-3295.
[3] 郑天宇, 王璐, 刘金彦, 王佳. 离子液体在甲醇/硫酸介质中对Q235钢表面的缓蚀性能[J]. 化工学报, 2020, 71(5): 2230-2239.
[4] 李文秀, 张羽, 曹颖, 丁忠瀚, 赵思雨, 张弢. 离子液体用于四氢呋喃-乙醇-水三元共沸物系分离的研究[J]. 化工学报, 2020, 71(4): 1676-1682.
[5] 朱林, 韩威, 李文松, 邬长城, 李芳, 薛伟, 王延吉. [BMIm]Br离子液体辅助HZSM-5催化乙酸环己酯高选择性水解反应[J]. 化工学报, 2020, 71(4): 1609-1617.
[6] 陈蓓秋, 林春香, 刘以凡, 吕源财, 刘明华. 离子液体在纳米纤维素制备中的应用进展[J]. 化工学报, 2020, 71(3): 903-913.
[7] 詹世平, 丁仕强, 王卫京, 李鸣明, 赵启成. 超临界流体技术制备生物可降解聚合物/药物纳米微粒研究进展[J]. 化工学报, 2020, 71(3): 923-935.
[8] 项小燕, 危依, 裴宝有, 丘荣星, 陈晓燕, 赵朝阳, 罗小燕, 林金清. 碱性离子液体协同配合剂催化葡萄糖异构化制备果糖[J]. 化工学报, 2020, 71(1): 290-296.
[9] 刘佳佳, 付雪, 许映杰. 离子液体吸收分离一氧化碳的研究进展[J]. 化工学报, 2020, 71(1): 138-147.
[10] 李嘉辰, 俞斌, 王琦, 张丽. 分子模拟研究壳聚糖-氮化硼纳米管封装及输运阿霉素[J]. 化工学报, 2020, 71(1): 354-360.
[11] 张博, 何依然, 刘迎春, 王琦. 异喹啉类生物碱和G-四链体结合的分子动力学研究[J]. 化工学报, 2020, 71(1): 344-353.
[12] 宋思婕,姚加,李浩然. 离子液体汽化焓的测量方法[J]. 化工学报, 2020, 71(1): 26-33.
[13] 马晓雪, 梁坤豪, 魏杰, 宋宗仁, 肖传佑, 巩璐, 房大维. 醚基高铼酸盐离子液体的催化性能研究[J]. 化工学报, 2020, 71(1): 314-319.
[14] 陆小华, 陈义峰, 董依慧, 吉晓燕, 谢文龙, 吴楠桦, 安蓉, 戴中洋, 李峥. 纳微界面增强CO2吸收及机理分析[J]. 化工学报, 2020, 71(1): 34-42.
[15] 魏颖, 陶明松, 朱耀锋, 张庆国. GNs/[Bmim][BF4]复合材料的制备及其超电容性能[J]. 化工学报, 2020, 71(1): 417-425.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 谭意平;张宁;汪淑华;姚林.

新型介孔有机硅高沸物裂解催化剂的合成、表征及活性

[J]. CIESC Journal, 2008, 59(11): 2800 -2804 .
[2] 赵文,周传光,韩方煜,李成岳. 基于废料最少的反应器网络综合(Ⅰ)同时进行反应与混合的几何表达 [J]. CIESC Journal, 2001, 52(1): 35 -39 .
[3] 莫之光,梁应昌,李遴榷,范琼嘉,陈德峻,傅万飞. 鼓泡塔反应器分布板的开孔率和液体返混 [J]. CIESC Journal, 1979, 30(2): 185 -194 .
[4] 李锦春;杨永兵;尤秀兰;曹谦芝;周洁洁. 芳纶浆粕增强聚丙烯复合材料的结构与性能 [J]. CIESC Journal, 2007, 58(12): 3191 -3196 .
[5] 徐崇嗣,姜庆泉,张秀成. 气流在板波填料内的径向混合——(Ⅰ)试验与关联 [J]. CIESC Journal, 1986, 37(1): 89 -97 .
[6] 吴国庆;颜学峰 .

基于ART-SVR的过程建模及在干点软测量中的应用

[J]. CIESC Journal, 2008, 59(4): 927 -933 .
[7] 邓先和,谭盈科,邓颂九. 多头与单头螺旋槽管传热准数方程关联法 [J]. CIESC Journal, 1989, 40(1): 18 -27 .
[8] 葛世英,蔡云昇,李盘生. 小颗粒滴流床中气液有效界面积研究 [J]. CIESC Journal, 1989, 40(5): 549 -555 .
[9] 马斌, 彭永臻, 王淑莹, 葛士建, 杨莹莹, 祝贵兵. 强化生物除磷系统中聚磷菌菌群特性 [J]. 化工学报, 2010, 61(5): 1282 -1285 .
[10] 申屠宝卿;吴建一;翁志学 .

聚合物配位体结构对钴卟啉氧结合性能的影响

[J]. CIESC Journal, 2006, 57(2): 409 -413 .