化工学报 ›› 2020, Vol. 71 ›› Issue (1): 388-396.doi: 10.11949/0438-1157.20191317

• 材料化学工程与纳米技术 • 上一篇    下一篇

新型丝素复合膜的微结构表征及热稳定性

李莹莹1,2(),邓谦谦1,2,刘浩1,2,刘其春1,2,顾正桂2,王昉1()   

  1. 1. 南京师范大学分析测试中心,江苏 南京210023
    2. 南京师范大学化学与材料科学学院,江苏 南京210023
  • 收稿日期:2019-11-04 修回日期:2019-11-18 出版日期:2020-01-05 发布日期:2019-11-18
  • 通讯作者: 王昉 E-mail:liyingying0715@163.com;wangfang@njnu.edu.cn
  • 作者简介:李莹莹(1994—),女,硕士研究生,liyingying0715@163.com
  • 基金资助:
    国家自然科学基金项目(21973045);江苏省高校自然科学基金项目(15kJB150018)

Microstructure characterization and thermal stability of new silk fibroin composite films

Yingying LI1,2(),Qianqian DENG1,2,Hao LIU1,2,Qichun LIU1,2,Zhenggui GU2,Fang WANG1()   

  1. 1. Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, Jiangsu, China
    2. School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, Jiangsu, China
  • Received:2019-11-04 Revised:2019-11-18 Online:2020-01-05 Published:2019-11-18
  • Contact: Fang WANG E-mail:liyingying0715@163.com;wangfang@njnu.edu.cn

摘要:

基于丝素的高分子复合材料可以广泛地应用于组织工程、生物医药和半导体材料等领域。通过物理-共混技术制备了一种新型生物高分子丝素/聚乳酸复合膜。利用扫描电镜、傅里叶红外光谱、拉曼光谱、X射线衍射和热分析技术对其形貌、结构和相态组分以及热稳定性进行了表征,探究了不同比例复合膜的微结构、相互作用机理和热稳定性。结果表明:随着丝素含量的增加,复合膜中的β-折叠含量增多,α-螺旋和无规卷曲含量减少,玻璃化转变温度提高;由于丝素与聚乳酸间的相互作用,提高了复合膜的热稳定性。

关键词: 丝素蛋白, 聚乳酸, 复合材料, 微尺度, 结晶

Abstract:

Silk fibroin-based polymer composites can be widely used in the fields of tissue engineering, biomedicine, and semiconductor materials. In this study, a novel silk fibroin/polylactic acid biocomposite film was prepared by physical-blending technique. Scanning electron microscope(SEM), Fourier transform infrared analysis(FTIR), Raman spectroscopy, X-ray diffraction (XRD) and thermal analysis were used to characterize the morphology, structure, phase components and thermal stability of the composite films with different proportions, and to explore their microstructure, interaction mechanism and thermal stability. The results showed that with the increase of silk fibroin content, the content of β-sheet increased, the content of α-helix and random coils decreased, and the glass transition temperature increased. Due to the interaction between silk fibroin and polylactic acid, which improved the thermal stability of the composite film.

Key words: silk fibroin, polylactic acid, composite materials, microscale, crystallization

中图分类号: 

  • TQ 317

图1

不同质量比例制备的MSF/PLA复合膜的电镜图(上层图a~e分别表示丝素蛋白/聚乳酸混合溶液,MSF/PLA-0∶5,MSF/PLA-1∶5,MSF/PLA-5∶5, MSF/PLA-5∶1和MSF/PLA-5∶0;下层图a'~e'分别是对应比例丝素聚乳酸复合膜电镜图)"

图2

不同质量比例MSF/PLA复合膜的红外光谱图"

表1

复合材料中桑蚕丝素蛋白各组分含量"

Sampleβ-sheet/%α-helix & random coils /%Turns/%Side chains/%
MSF/PLA-1∶512.2373.8912.561.32
MSF/PLA-5∶515.5471.0310.792.64
MSF/PLA-5∶118.2468.999.563.21
MSF/PLA-5∶023.2966.808.551.36

图3

不同质量比例的MSF/PLA复合膜的激光拉曼谱图"

图4

不同质量比例的MSF/PLA复合膜的XRD谱图"

表2

复合膜的热力学参数、相态的相对含量以及TG数据"

ItemMSF/PLA-0∶5MSF/PLA-1∶5MSF/PLA-5∶5MSF/PLA-5∶1MSF/PLA-5∶0
Tg/℃55.8158.6865.0274.33154.32
Tm /℃150.29150.01147.11144.98
ΔHm/(J·g-1)30.2325.3718.6814.57
ΔCp/(J·g-1·℃-1)0.390.400.430.46
XC-DSC0.330.270.190.11
XMAP-DSC0.630.660.700.75
XRAP-DSC0.040.070.110.14
XC-XRD0.350.300.210.12
XMAP-XRD0.590.630.690.74
XRAP-XRD0.060.070.100.14
Tonset /℃346.27330.19305.38283.37272.76
Tp/℃350.69336.95316.06289.62280.27
ΔYw /%0.421.734.806.076.99

图5

MSF/PLA-1∶5复合膜的SSDSC可逆比热容曲线"

图6

MSF/PLA复合材料的热重曲线"

1 Yu S, Yang W, Chen S, et al. Floxuridine-loaded silk fibroin nanospheres[J]. RSC Advances, 2014, 4(35): 18171.
2 Mitropoulos A N, Marelli B, Ghezzi C E, et al. Transparent, nanostructured silk fibroin hydrogels with tunable mechanical properties[J]. ACS Biomater. Sci. Eng., 2015, 1(10): 964-970.
3 Koh L D, Cheng Y, Teng C P, et al. Structures, mechanical properties and applications of silk fibroin materials[J]. Prog. Polym. Sci., 2015, 46: 86-110.
4 李莹莹, 王昉, 刘其春, 等. 丝素蛋白及其复合材料的研究进展[J]. 材料工程, 2018, 46 (8): 18-30.
Li Y Y, Wang F, Liu Q C, et al. Research progress of silk fibroin and its composites[J] . Materials Engineering, 2018, 46 (8): 18-30.
5 Pritchard E M, Dennis P B, Omenetto F, et al. Physical and chemical aspects of stabilization of compounds in silk [J]. Biopolymers, 2012, 97(6): 479-498.
6 Zhu H L, Feng X X, Zhang H P, et al. Structural characteristics and properties of silk fibroin/poly (lactic acid) blend films[J]. Biomater. Sci. Polym. Ed., 2009, 20 (9): 1259-1274.
7 王利君, 熊杰, 骆菁菁, 等. 聚乳酸-聚己内酯/丝素蛋白三元复合纳米纤维膜支架的结构与性能[J]. 纺织学报, 2017, 38(5): 8-13.
Wang L J, Xiong J, Luo J J, et al. Structure and properties of polylactic acid-polycaprolactone/ silk fibroin composite nanofibrous scaffolds [J]. J. Text. Res., 2017, 38(5): 8-13.
8 肖红伟, 熊杰, 李妮, 等. 聚乳酸-乙醇酸共聚物/丝素共混纳米纤维多孔膜的制备及性能[J]. 高分子材料科学与工程, 2011, 27(12): 142-145.
Xiao H W, Xiong J, Li N, et al. Preparation and properties of poly(lactide-co-glycolide)/silk blend nanofibrous porous membrane[J]. Polymer Materials Science & Engineering, 2011, 27(12): 142-145.
9 Zhang C, Zhang Y P, Shao H L, et al. Hybrid silk fibers dry-spun from regenerated silk fibroin/ graphene oxide aqueous solutions[J]. ACS Appl. Mater. Interfaces, 2016, 8: 3349-3358.
10 Suzuki S, Dawson R A, Chirila T V, et al. Treatment of silk fibroin with poly(ethylene glycol) for the enhancement of corneal epithelial cell growth[J]. Journal of Functional Biomaterials, 2015, 6(2): 345-366.
11 Martin O, Averous L. Poly(lactic acid): plastication and properties of biodegradable multiphase systems[J]. Polymer, 2001, 42(14): 6209-6219.
12 Xiao H, Yang L, Ren X, et al. Kinetics and crystal structure of poly(lactic acid) crystallized nonisothermally: effect of plasticizer and nucleating agent[J]. Polymer Composites, 2010, 31(12): 2057-2068.
13 Shao J, Guo Y, Xiang S, et al. The morphology and spherulite growth of PLA stereocomplex in linear and branched PLLA/PDLA blends: effects of molecular weight and structure[J]. Crystengcomm, 2015, 18(2): 274-282.
14 倪莉, 王璋, 姚文华, 等. 丝素蛋白结构的研究(1): 探讨氯化钙溶液溶解丝素的机理[J]. 中国食品学报, 2001, 1(1): 12-18.
Ni L, Wang Z, Yao W H, et al. Study on the structure of silk fibroin protein(1): The mechanism of dissolving fibroin in calcium chloride solution [J]. Journal of Chinese Food, 2001, 1(1): 12-18.
15 Lai S M, Hsieh Y T. Preparation and properties of polylactic acid (PLA)/silica nanocomposites[J]. J. Macromol. Sci. B, 2016, 55(3): 211-228.
16 Zhou S B, Zheng X T, Yu X J, et al. Hydrogen bonding interaction of poly(D, L-lactide)/hydroxyapatite nanocomposites[J]. Chem. Mater., 2007, 19: 247-253.
17 Zhong J, Ma M, Li W, et al. Self-assembly of regenerated silk fibroin from random coil nanostructures to antiparallel β-sheet nanostructures[J]. Biopolymers, 2015, 101(12): 1181-1192.
18 于海洋, 王昉, 刘其春, 等.新型丝素蛋白膜的结构和热分解动力学机理[J].物理化学学报, 2017, 33(2): 344-355.
Yu H Y, Wang F, Liu Q C, et al. Structure and kinetics of thermal decomposition mechanism of novel silk fibroin films[J].Acta Physico-Chimica Sinica, 2017, 33(2): 344-355.
19 Hu X, Kaplan D, Cebe P. Determining beta-sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy[J]. Macromolecules, 2006, 39: 6161-6170.
20 Wang F, Wu H, Venkataraman V, et al. Silk fibroin-poly(lactic acid) biocomposites: effect of protein-synthetic polymer interactions and miscibility on material properties and biological responses [J]. Materials Science & Engineering C, 2019, 104: 109890.
21 Wool R P, Bretzlaff R S, Li B Y, et al. Infrared and Raman spectroscopy of stressed polyethylene[J]. Journal of Polymer Science, Part B (Polymer Physics), 1986, 24(5): 1039-1066.
22 Xu Y, Liang L. Surface-enhanced resonance Raman scattering of phycoerythrin adsorbed by silver hydrosols[J]. Applied Spectroscopy, 1994, 48(9): 1147-1149.
23 Carey P R. Biochemical Applications of Raman and Resonance Raman Spectroscopies[M]. New York: Academic Press, 1982: 71-96.
24 Bandekar J, Krimm S. Vibrational analysis of peptides, polypeptides, and proteins: characteristic amide bands of β-turns[J]. Proc. Natl. Acad. Sci. USA, 1979, 76(2): 774-777.
25 Kister G, Cassanas G, Vert M, et al. Vibrational analysis of poly(L-lactic acid)[J]. Journal of Raman Spectroscopy, 2010, 26(4): 307-311.
26 Furukawa T, Sato H, Murakami R, et al. Raman microspectroscopy study of structure, dispersibility, and crystallinity of poly(hydroxybutyrate)/poly(L-lactic acid) blends[J]. Polymer, 2006, 47(9): 3132-3140.
27 Huang S M, Hwang J J, Liu H J, et al. Crystallization behavior of poly(L-lactic acid)/montmorillonite nanocomposites[J]. J. Appl. Polym. Sci., 2010, 117(1): 434-442.
28 Bruckmoser K, Resch K. Effect of processing conditions on crystallization behavior and mechanical properties of poly(lactic acid) staple fibers[J]. J. Appl. Polym. Sci., 2015, 132(33). doi: 10.1002/app.42432.
doi: 10.1002/app.42432
29 Pluta M. Morphology and properties of polylactide modified by thermal treatment, filling with layered silicates and plasticization[J]. Polymer, 2004, 45(24): 8239-8251.
30 Wu T M, Wu C Y. Biodegradable poly (lactic acid)/chitosan-modified montmorillonite nanocomposites: preparation and characterization[J]. Polymer Degradation & Stability, 2006, 91(9): 2198-2204.
31 Zhang J, Yan D X, Xu J Z, et al. Highly crystallized poly (lactic acid) under high pressure[J]. AIP Advances, 2012, 2(4): 042159.
32 Pal A, Katiyar V. Melt processing of biodegradable poly (lactic acid)/ functionalized chitosan nanocomposite films: mechanical modeling with improved oxygen barrier and thermal properties[J]. J. Polym. Res., 2017, 24 (10): 173.
33 Iannace S, Maffezzoli A, Leo G, et al. Influence of crystal and amorphous phase morphology on hydrolytic degradation of PLLA subjected to different processing conditions[J]. Polymer, 2001, (42): 3799-3807.
34 Wang F, Wolf N, Rocks E M, et al. Comparative studies of regenerated water-based Mori, Thai, Eri, Muga and Tussah silk fibroin films[J]. J. Therm. Anal. Calorim., 2015, 122(3): 1069-1076.
35 Gaur U. Advanced thermal analysis system (ATHAS) polymer heat capacity data bank[C]//ACS Symposium. 1982: 355-366.
36 Sheng S J, Hu X, Wang F, et al. Mechanical and thermal property characterization of poly-L-lactide(PLLA) scaffold developed using pressure-controllable green foaming technology[J]. Materials Science and Engineering: C, 2015, 49: 612-622.
37 刘其春, 王昉, 李莹莹, 等. 比较两种丝素膜的结构、热分解机理与热力学参数[J]. 中国科学: 化学, 2019, (7): 1014-1029.
Liu Q C, Wang F, Li Y Y, et al. Comparative studies of structure, thermal decomposition mechanism and thermodynamic parameters of two kinds of silk fibroin films [J]. Chinese Science: Chemistry, 2019, (7): 1014-1029.
[1] 赵绍磊, 王耀国, 张腾, 周丽娜, 龚俊波, 汤伟伟. 制药结晶中的先进过程控制[J]. 化工学报, 2020, 71(2): 459-474.
[2] 蒋瑞, 胡冬冬, 刘涛, 赵玲. 热塑性聚醚酯弹性体硬段含量对其超临界CO 2发泡行为的影响[J]. 化工学报, 2020, 71(2): 871-878.
[3] 张文铖,龚俊波,董伟兵,吴送姑. 凝胶对结晶过程影响的研究进展[J]. 化工学报, 2020, 71(2): 487-499.
[4] 潘海华, 唐睿康. 生物矿化及仿生矿化中的信息传递和转化[J]. 化工学报, 2020, 71(1): 68-80.
[5] 邹瀚影,冯妍卉,邱琳,张欣欣. 十八烷酸热传导机制的尺度效应研究[J]. 化工学报, 2019, 70(S2): 155-160.
[6] 闫秋会,孙晓阳,罗杰任,吴志菊. 玻璃棉/SiO2气凝胶复合板的改性研究[J]. 化工学报, 2019, 70(S2): 363-368.
[7] 侯德鑫,陈玥,叶树亮. 基于热成像的背胶石墨膜面向热导率测试方法[J]. 化工学报, 2019, 70(S2): 76-84.
[8] 于强, 鹿院卫, 张晓盼, 吴玉庭. 纳米粒子对熔盐复合蓄热材料热物性的影响[J]. 化工学报, 2019, 70(S1): 217-225.
[9] 王慧丽, 周国兵. 局部低温诱发过冷三水醋酸钠释能特性实验研究[J]. 化工学报, 2019, 70(9): 3346-3352.
[10] 李冠男, 贺高红, 姜晓滨. 膜结晶处理高浓度Na+、Mg2+//Cl--H2O溶液的结晶调控[J]. 化工学报, 2019, 70(9): 3412-3420.
[11] 李艺群, 罗春欢, 李娜, 苏庆泉. 基于吸收式制冷循环的CaCl2-LiCl/H2O工质对研究[J]. 化工学报, 2019, 70(9): 3483-3494.
[12] 苗苗, 孔皓, 张缦, 吴玉新, 杨海瑞, 张建胜. 多元煤灰灰熔点及晶体组成特性研究[J]. 化工学报, 2019, 70(8): 2909-2918.
[13] 贾蒲悦, 武卫东, 王益聪, 张兵. 新型复合低温相变蓄冷材料的研制及热物性优化[J]. 化工学报, 2019, 70(7): 2758-2765.
[14] 靳宏伟,翟丹丹,王心,赵爽,孟祥阳,何玥颖,沈洋,惠明. 石墨烯/聚苯胺修饰阳极对微生物燃料电池性能的影响[J]. 化工学报, 2019, 70(6): 2343-2350.
[15] 于守武, 肖淑娟, 赵泽文, 霍晓文, 魏俊富. 蜜胺-环氧树脂双层包覆聚磷酸铵及其阻燃PP的研究[J]. 化工学报, 2019, 70(6): 2370-2376.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈玉保, 宁平, 谢有畅, 陈云华, 孙暠, 刘志云. Pilot-scale Experiment for Purification of CO from Industrial Tail Gases by Pressure Swing Adsorption[J]. CIESC Journal, 2008, 16(5): 715 -721 .
[2] 蒋章焰,马同泽,赵嘉琪,霍秀和. 过冷降膜的换热特性和破断条件 [J]. CIESC Journal, 1990, 41(6): 663 -669 .
[3] 郑广涛;施建伟;陈铭夏;袁坚;上官文峰 .

过渡金属离子掺杂纳米TiO2的相变与光催化活性

[J]. CIESC Journal, 2006, 57(3): 564 -570 .
[4] 唐杰斌, 陈克复, 徐峻, 李军. 龙须草纤维素的分离与结构表征[J]. 化工学报, 2011, 62(6): 1742 -1748 .
[5] 邢光建,李钰梅,李占略. 不同形貌的CaWO4材料的微乳液法制备及其发光性能 [J]. CIESC Journal, 2010, 29(11): 2114 .
[6] 陈 国,赵 珺,苏鹏飞,陈宏文. 微藻产生物柴油研究进展[J]. CIESC Journal, 2011, 30(10): 2186 .
[7] 陈彦1,2,张济宇1. 福建无烟煤Na2CO3催化气化过程的比表面变化特性[J]. 化工学报, 2012, 63(8): 2443 -2452 .
[8] 任南琪, 周显娇, 郭婉茜, 杨珊珊. 染料废水处理技术研究进展[J]. 化工学报, 2013, 64(1): 84 -94 .
[9] 王再英, 白华宁. 基于相关系数的过程系统故障检测与诊断方法[J]. 化工学报, 2013, 64(12): 4621 -4627 .
[10] 陈磊, 陈汉平, 陆强, 宋扬, 丁学杰, 王贤华, 杨海平. 木质素结构及热解特性[J]. 化工学报, 2014, 65(9): 3626 -3633 .