化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 227-235.doi: 10.11949/0438-1157.20191315

• 流体力学与传递现象 • 上一篇    下一篇

不同推进式桨叶对搅拌反应器内气液两相混合特性的影响

黎义斌1,2(),宋亚娟1,歹晓晖1,李正贵3   

  1. 1.兰州理工大学能源与动力工程学院,甘肃 兰州 730050
    2.甘肃省流体机械及系统重点实验室,甘肃 兰州 730050
    3.西华大学流体及动力机械教育部重点实验室,四川 成都 610039
  • 收稿日期:2019-11-04 修回日期:2020-01-07 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 黎义斌 E-mail:liyibin58@163.com
  • 作者简介:黎义斌(1977—),男,博士,副教授,liyibin58@163.com
  • 基金资助:
    西华大学流体及动力机械教育部重点实验室开放基金项目(szjj2019-011)

Effects of different propeller blades on gas-liquid two-phase mixing characteristics in stirred reactor

Yibin LI1,2(),Yajuan SONG1,Xiaohui DAI1,Zhenggui LI3   

  1. 1.School of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
    2.Gansu Key Laboratory of Fluid Machinery and Systems, Lanzhou 730050, Gansu, China
    3.Key Laboratory of Fluid and Power Machinery, Xihua University, Chengdu 610039, Sichuan, China
  • Received:2019-11-04 Revised:2020-01-07 Online:2020-04-25 Published:2020-05-22
  • Contact: Yibin LI E-mail:liyibin58@163.com

摘要:

为了研究不同推进式桨叶对搅拌反应器内气液两相混合特性的影响,以某搅拌反应器的推进式桨叶为研究对象,将搅拌聚合物简化为含5%气体的清水介质,基于螺旋桨叶片设计方法和CFD流场仿真技术,采用VOF多相流模型和RNG k-ε 湍流模型,对四种推进式桨叶内部气液两相流动进行数值分析,实现了推进式桨叶参数设计和性能优化。分析设计转速在400 r/min时的径向速度、0~18 s的时间范围内气体体积分数的变化、无量纲气体体积分数以及无量纲轴向速度,来评价四种推进式搅拌反应器搅拌性能的剪切、混合、分散。研究结果表明:变螺旋角(FDC-450-γ)非对称桨叶的流动更均匀、混合速率更快和剪切分散能力能强。通过对四种不同推进式桨叶的比较分析,为后续的研究和工程实践奠定了基础。

关键词: 推进式桨叶, 两相流, 混合特性, 计算流体力学, 搅拌器

Abstract:

A stirred reactor is a device that supplies mechanical energy to a stirred medium by obtaining a suitable flow field. It is widely used in industrial production, especially in the chemical industry, and many chemical production applications are more or less affected by the effect of stirring. Due to the lack of data on the design parameters of propeller blades at home and abroad, the profile of propeller blades is poor, and the stirring performance needs to be improved. In order to study and compare the stirring effect of several propeller blades, the propelling blade of the stirred reactor is taken as the research object, and polymerization medium of the mixing reactor is simplified to water and gas. First, the propeller blades are designed according to the design parameters. Four different types of propeller blades are designed by using different helix angles and contour shapes. Then, three-dimensional diagrams of the four propelled stirred reactors are drawn and unstructured meshing is performed according to the two-dimensional diagrams. Finally, the internal flow characteristics of the four propelled stirred reactors were simulated and analyzed by using multiple reference frames, VOF multiphase flow models, and RNG k-ε turbulence models. When the speed is 400 r/min, we qualitative analyze the distribution and uniformity of radial velocity and the mixing degree through comparing radial velocity cloud graph and the variation of gas volume fraction cloud graph from 0 to 18 s (including 0.6 s, 6 s, 12 s and 18 s). Besides we also define the dimensionless gas volume fraction and axial velocity, so 0 to 18 s (including 0.6 s, 6 s, 12 s and 18 s) hybrid rate,distribution of the gas volume fraction and the rate of change of the axial velocity are quantitative analyzed. According to the results of numerical simulation, the mixing characteristics and mixing degrees of the four types of propelled stirred reactors were compared. We can draw the following conclusions the asymmetric blades with variable spiral angle (FDC-450-γ) has a more uniform flow rate, the mixing rate is faster and the mixing degree is better. In this paper, four different propeller blades are selected for comparison and analysis, which lays the foundation for subsequent research and engineering practice.

Key words: propeller blade, two-phase flow, mixing characteristics, computational fluid dynamics, stirred vessel

中图分类号: 

  • TQ 027

图1

推进式桨叶展开图"

图2

系数ki的曲线"

表1

非对称形桨叶的横截面宽度bi的确定"

r/R(x2/bm)/%(x1/bm)/%(b/bm)/%(b1/b)/%
0.228.6846.9975.6735
0.332.6751.2483.9135
0.436.6254.9191.5335
0.540.5356.5297.0535.5
0.644.1855.8210038.9
0.746.9752.2299.1944.2
0.848.2244.6392.8547.8
0.945.4630.3175.7750

图3

桨叶横截面图"

表2

四种推进式桨叶的名称简化"

名称表示方法含义
恒螺旋对称桨叶DC-450-32
变螺旋对称桨叶DC-450-γ
恒螺旋非对称 桨叶FDC-450-32
变螺旋非对称 桨叶FDC-450-γ

图4

四种推进式桨叶的三维模型"

图5

四种不同搅拌反应器"

图6

搅拌反应器网格划分"

图7

搅拌反应器的轴向力以及轴功率"

图8

A—A横截面的气相速度云图"

图9

搅拌反应器在0~18s内的气体体积变化过程"

图10

气体体积分数无量纲化分析"

图11

无量纲速度沿轴向的变化"

1 刘宝庆, 郑毅骏, 梁慧力, 等. 剪切变稀体系同心双轴搅拌釜内的气液分散模拟[J]. 化工学报, 2017, 68(6): 2280-2289.
Liu B Q, Zheng Y J, Liang H L, et al. CFD simulation on shear-thinning gas-liquid dispersion in coaxial mixer[J]. CIESC Journal, 2017, 68(6): 2280-2289.
2 王峰, 冯鑫, 毛在砂, 等. 搅拌槽内多相流动数值模拟研究进展[J]. 南京工业大学学报(自然科学版), 2009, 31(4): 103-110.
Wang F, Feng X, Mao Z S, et al. Numerical simulation progress on multiphase flow in stirred tanks[J]. Journal of Nanjing University of Technology (Natural Science Edition), 2009, 31(4): 103-110.
3 Liu B Q, Zhang Y K, Chen M Q, et al. Power consumption and flow field characteristics of a coaxial mixer with a double inner impeller[J]. Chinese Journal of Chemical Engineering, 2015, 23(1): 1-6.
4 Dular M, Bajcar T, Slemenik-Pere L, et al. Numerical simulation and experimental study of non-Newtonian mixing flow with a free surface[J]. Brazilian Journal of Chemical Engineering, 2006, 23(4): 473-486.
5 Haque J N, Mahmud T, Roberts K J. Modeling turbulent flows with free-surface in unbaffled agitated vessels[J]. Industrial and Engineering Chemistry Research, 2006, 45(8): 2881-2891.
6 Mahmud T, Haque J N, Roberts K J, et al. Measurements and modelling of free-surface turbulent flows induced by a magnetic stirrer in an unbaffled stirred tank reactor[J]. Chemical Engineering Science, 2009, 64(20): 4197-4209.
7 Glover G M C, Fitzpatrick J J. Modelling vortex formation in an unbaffled stirred tank reactors[J]. Chemical Engineering Journal, 2007, 127(1): 11-22.
8 Torré J P, Fletcherb D F, Lasuyec T, et al. An experimental and computational study of the vortex shape in a partially baffled agitated vessel[J]. Chemical Engineering Science, 2007, 62(7): 1915-1926.
9 李挺, 贾卓泰, 张庆华, 等. 几种单层桨搅拌槽内宏观混合特性的比较[J]. 化工学报, 2019, 70(1): 32-38.
Li T, Jia Z T, Zhang Q H, et al. Comparison of macro-mixing characteristics of a stirred tank with different impellers[J]. CIESC Journal, 2019, 70(1): 32-38.
10 杨娟, 张庆华, 杨超, 等. 不同组合桨搅拌槽内非牛顿流体的微观混合特性[J]. 过程工程学报, 2019, 19(5): 865-871.
Yang J, Zhang Q H, Yang C, et al. Micro-mixing characteristics of non-Newtonian fluid in a stirred tank agitated with different impellers [J]. Chin. J. Process Eng. , 2019, 19(5): 865-871.
11 Kawahara A, Sadatomi M, Nei K, et al. Characteristics of two-phase flows in a rectangular microchannel with a T-junction type gas-liquid mixer[J]. Heat Transfer Engineering, 2011, 32(7/8): 585-594.
12 Busciglio A, Caputo G, Scargiali F. Free-surface shape in unbaffled stirred vessels: experimental study via digital image analysis[J]. Chemical Engineering Science, 2013, 104: 868-880.
13 Mohamed H M, Akimaro K, Michio S. Experimental investigation of gas–non-Newtonian liquid two-phase flows from T-junction mixer in rectangular microchannel[J]. International Journal of Multiphase Flow, 2015, 72: 263-274.
14 Sun H Y, Wang W J, Mao Z C. Numerical simulation of the whole three-dimensional flow in a stirred tank with anisotropic algebraic stress model [J]. Chinese Journal of Chemical Engineering, 2002, 10(1): 15-24.
15 Chara Z, Kysela B, Konfrst J, et al. Study of fluid flow in baffled vessels stirred by a Rushton standard impeller[J]. Applied Mathematics and Computation, 2016, 272(3): 614-628.
16 Liu N N, Wang W, Han J C, et al. A PIV investigation of the effect of disperse phase fraction on the turbulence characteristics of liquid–liquid mixing in a stirred tank[J]. Chemical Engineering Science, 2016, 152: 528-546.
17 Yang F L, Zhou S J, An X H. Gas–liquid hydrodynamics in a vessel stirred by dual dislocated-blade Rushton impellers[J]. Chinese Journal of Chemical Engineering, 2015, 23(11): 1746-1754.
18 Vlček P, Kysela B, Jirout T, et al. Large eddy simulation of a pitched blade impeller mixed vessel—comparison with LDA measurements[J]. Chemical Engineering Research and Design, 2016, 108(SI):42-48
19 Escamilla-Ruíz I A, Sierra-Espinosa F Z, García J C, et al. Experimental data and numerical predictions of a single-phase flow in a batch square stirred tank reactor with a rotating cylinder agitator[J]. Heat and Mass Transfer, 2017, 53(9): 2933-2949.
20 Wang W J, Mao Z S. Numerical simulation of gas-liquid flow in a stirred tank with a Rushton impeller[J]. Chinese Journal of Chemical Engineering, 2002, 10(4): 385-395.
21 Roman R V, Tudose R Z. Studies on transfer processes in mixing vessels: effect of particles on gas-liquid mass transfer using modified Rushton turbine agitators[J]. Bioprocess Engineering, 1997, 17(6): 361-365.
22 Roman R V, Tudose R Z. Studies on transfer processes in mixing vessels: power consumption of the modified Rushton turbine agitators in three-phase systems[J]. Bioprocess Engineering, 1997, 17(5): 307-316.
23 Roman R V, Tudose R Z. Studies on transfer processes in mixing vessels: effect of particles on gas-liquid hydrodynamics using modified Rushton turbine agitators[J]. Bioprocess Engineering, 1997, 16(3): 135-144.
24 Liu B, Zhang Y, Chen M, et al. Power consumption and flow field characteristics of a coaxial mixer with a double inner impeller[J]. Chinese Journal of Chemical Engineering, 2015, 23(1): 1-6.
25 Bao Y, Li T, Wang D, et al. Discrete element method study of effects of the impeller configuration and operating conditions on particle mixing in a cylindrical mixer[J]. Particuology, 2019, https: //doi. org/10. 1016/j. partic. 2019. 02. 002
26 Reviol T, Kluck S, Böhle M. A new design method for propeller mixers agitating non-Newtonian fluid flow[J]. Chemical Engineering Science, 2018, 190: 320-332.
27 钟天铖, 汤文成, 刘碧茜. 推进式搅拌器固液混合的计算流体力学模拟[J]. 东南大学学报(自然科学版), 2016, 46(4): 713-719.
Zhong T C, Tang W C, Liu B X. CFD simulation of solid-liquid mixing in stirred vessel by propeller agitator[J]. Journal of Southeast University (Natural Science Edition), 2016, 46(4): 713-719.
28 刘培坤, 张瑞, 杨兴华, 等. 涡轮式与推进式搅拌釜的数值模拟研究[J]. 化工机械, 2017, 44(1): 84-87+96.
Liu P K, Zhang R, Yang X H, et al. Analysis of sealing structure reliability for vulcanizing tank connection[J]. Chemical Engineering & Machinery, 2017, 44(1): 84-87+96.
29 阙甲球. 推进式搅拌器的机械设计[J]. 化工炼油机械, 1983, 12(6): 38-47.
Que J Q. Mechanical design of propeller agitators[J]. Chemical Refining Machinery, 1983, 12(6): 38-47
30 Tian F, Shi W D, Jiang H. Comparison of sewage treatment mixer in three pool face boundary conditions[C]// 2nd International Conference on Frontiers of Mechanical Engineering and Materials Engineering (MEME 2013). Hong Kong, China, 2014.
[1] 张兵, 魏利平, 滕海鹏. 隔板式内循环流化床压力脉动信号递归分析[J]. 化工学报, 2020, 71(S1): 106-113.
[2] 刘雅琳, 王珂, 赵蕾. 分流三通气动噪声偶极子声源特性的数值分析[J]. 化工学报, 2020, 71(S1): 194-203.
[3] 詹宏波, 郑文远, 文涛, 张大林. 微尺度通道内R134a的冷凝传热实验研究[J]. 化工学报, 2020, 71(S1): 83-89.
[4] 亢银虎, 张弋, 张朋远, 卢啸风. 二甲醚球形扩散火焰的振荡熄火动力学机理研究[J]. 化工学报, 2020, 71(4): 1469-1481.
[5] 车健, 江锦波, 李纪云, 彭旭东, 马艺, 王玉明. 节流孔出气模式对静压干气密封稳态性能影响[J]. 化工学报, 2020, 71(4): 1734-1743.
[6] 田瑞超, 王淑彦, 邵宝力, 李好婷, 王玉琳. 基于粗糙颗粒动理学流化床内颗粒与幂律流体两相流动特性的数值模拟研究[J]. 化工学报, 2020, 71(4): 1528-1539.
[7] 吴兴辉, 杨震, 陈颖, 段远源. 基于离散相模型的相变微胶囊流体传热特性数值模拟[J]. 化工学报, 2020, 71(4): 1491-1501.
[8] 陈胡炜, 吉华, 冯东林, 李倩, 陈志. 基于多楔现象的微孔端面机械密封泄漏率分析及孔形设计[J]. 化工学报, 2020, 71(4): 1723-1733.
[9] 李爽, 李玉星, 王冬旭, 王权. 上倾管高黏油气两相流型及压降特性[J]. 化工学报, 2020, 71(3): 983-996.
[10] 周芮, 程光平, 张浩, 任枫, 王舜浩, 张小斌. 煤油贮箱冷氦鼓泡增压过程数值研究[J]. 化工学报, 2020, 71(3): 965-973.
[11] 周海军, 熊源泉. 补充风对水平管高压密相气力输送影响的模拟研究[J]. 化工学报, 2020, 71(2): 602-613.
[12] 胡贵华, 叶贞成, 杜文莉. 助燃空气对乙烯裂解炉NOx排放的影响[J]. 化工学报, 2020, 71(2): 698-707.
[13] 杨锋苓, 张翠勋, 苏腾龙. 柔性Rushton搅拌桨的功耗与流场特性研究[J]. 化工学报, 2020, 71(2): 614-625.
[14] 王修纲, 吴裕凡, 郭潞阳, 路庆华, 叶晓峰, 曹育才. 聚合釜传热性能的实验研究及数值模拟[J]. 化工学报, 2020, 71(2): 584-593.
[15] 张亮亮, 付纪文, 罗勇, 孙宝昌, 邹海魁, 初广文, 陈建峰. 面向海洋工程的超重力过程强化技术及应用[J]. 化工学报, 2020, 71(1): 1-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .